[chemical reaction: see text]. Using an operationally simple deuterium isotopic perturbation method, the relative configuration of 1,3-diols can be determined directly using 1H NMR spectroscopy. A comparison of the OH chemical shifts for OH/OH and OH/OD isotopomers provides a reliable assessment of the relative configuration of the diol; anti-1,3-diols within polyacetate and polypropionate frameworks have upfield isotope shifts of 2-16 ppb, whereas syn-1,3-diols show upfield isotope shifts of 20-33 ppb.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol052539dDOI Listing

Publication Analysis

Top Keywords

relative configuration
12
nmr spectroscopy
8
upfield isotope
8
isotope shifts
8
direct assignment
4
assignment relative
4
configuration acyclic
4
acyclic 13-diols
4
13-diols nmr
4
spectroscopy [chemical
4

Similar Publications

Muscular anatomy of the forelimb of Leopardus geoffroyi: Functional and phylogenetic aspects in Feliformia, part I. Proximal forelimb.

J Anat

January 2025

Instituto de Ecorregiones Andinas (INECOA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Jujuy, Jujuy, Argentina.

Anatomical knowledge is fundamental for all species. In particular, myology allows a deeper understanding of ecomorphology-especially for those species hard to observe in the wild-and may be an important source for phylogenetic information. In this study, we analyzed the myological variation of the musculature of the shoulder and arm of the forelimb in species of the suborder Feliformia and its relationship with the phylogenetic history and the locomotor behavior, habitat, and predatory habits of the species within this group, using Leopardus geoffroyi as a case study.

View Article and Find Full Text PDF

Efficient thermal management is crucial for optimizing the performance and longevity of automotive engines, particularly as environmental regulations become more stringent and consumer demand for fuel efficiency increases. This paper investigates the energy and exergy performance of a wavy fin-and-tube radiator employing novel ternary nanofluids (TNFs) for enhanced automotive cooling. A theoretical comparative analysis was performed on four distinct ethylene glycol-water solution-based TNF configurations.

View Article and Find Full Text PDF

Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon.

View Article and Find Full Text PDF

Unveiling Doping Kinetics in Cu(I) Metal Halides for Customized Luminescent Performance.

J Phys Chem Lett

January 2025

School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, People's Republic of China.

Intentional doping plays a pivotal role in customizing metal halides' electronic and optical features. This work manipulates the incorporation and distribution of Mn in Cu(I) halide by controlling the elemental steps involved in the growth-doping kinetics as well as investigates the localized lattice and electronic structures in different doping configurations. Complementary experimental and theoretical results demonstrate that a uniform and relatively high Mn doping level can be achieved by a step-tailored strategy that encompasses reducing the growth rate of the halide matrix, enhancing the surface adsorption of Mn, and facilitating the incorporation of the dopants.

View Article and Find Full Text PDF

(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity. The substituents at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!