The effects of muscle damage on running economy in healthy males.

Int J Sports Med

Department of Physical Education and Sports Sciences, Thessaly University, Karies 42100, Trikala, Greece.

Published: December 2005

Published information on aspects related to muscle damage and running economy is both limited and contradictory. To contribute to the current debate, we investigated the effects of an eccentric exercise session on selected muscle damage indices in relation to running economy using 10 (mean age 23 +/- 1 years) healthy male volunteers. The eccentric exercise session consisted of 120 (12 x 10) maximal voluntary repetitions by each randomly selected leg at the angular velocity of 1.05 rad . s (-1). Muscle damage (creatine kinase, delayed onset muscle soreness, range of movement, and eccentric, concentric and isometric [at 60 degrees and 110 degrees knee flexion] peak torque) and running economy (oxygen consumption, pulmonary ventilation, respiratory exchange ratio and breaths per minute during treadmill running at 133 and 200 m . min (-1)) indicators, were assessed pre-, 24-, 48-, 72- as well as 96-h after exercise. All muscle damage indicators revealed significant changes at almost all time-points of assessment compared to pre-exercise data (p < 0.05). However, none of the running economy parameters disclosed any significant change throughout the study (p > 0.05). It was concluded that changes in muscle damage and muscle performance as measured in this study are not reflected by concomitant alterations in running economy at submaximal intensities.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2005-837461DOI Listing

Publication Analysis

Top Keywords

muscle damage
24
running economy
24
damage running
8
eccentric exercise
8
exercise session
8
running
7
muscle
7
damage
6
economy
6
effects muscle
4

Similar Publications

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Skeletal organoids.

Biomater Transl

November 2024

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.

The skeletal system, composed of bones, muscles, joints, ligaments, and tendons, serves as the foundation for maintaining human posture, mobility, and overall biomechanical functionality. However, with ageing, chronic overuse, and acute injuries, conditions such as osteoarthritis, intervertebral disc degeneration, muscle atrophy, and ligament or tendon tears have become increasingly prevalent and pose serious clinical challenges. These disorders not only result in pain, functional loss, and a marked reduction in patients' quality of life but also impose substantial social and economic burdens.

View Article and Find Full Text PDF

Use of Hemoadsorption and Continuous Venovenous Hemodialysis With Enhanced Middle Molecule Clearance in Drug-Induced Rhabdomyolysis.

Case Rep Crit Care

January 2025

Department of Anesthesiology and Intensive Care Medicine, Kreiskliniken Günzburg-Krumbach, Krumbach, Germany.

Drug-induced rhabdomyolysis has become increasingly prevalent due to the rising use of medications such as statins, antidepressants, and antipsychotics. These can lead to muscle cell destruction and the release of myoglobin, potentially causing kidney damage. Recent advancements include the use of CytoSorb hemoadsorption as a promising therapy to remove myoglobin and other potentially toxic substances from the bloodstream.

View Article and Find Full Text PDF

DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments.

View Article and Find Full Text PDF

Backgrounds: Renal interstitial fibrosis (RIF) constitutes the ultimate pathological alteration in nearly all chronic kidney diseases (CKD). Mesenchymal stem cell conditioned medium (MSC-CM) exhibits an alleviating impact on renal fibrosis; however, the underlying mechanism remains unclear. The objective of this study was to explore whether MSC-CM regulates the expression of α-smooth muscle actin (α-SMA), Transforming growth factor-β1 (TGF-β1), Hypoxia-inducible factor-1α (HIF-1α), Nuclear receptor coactivators (NCOA1), and SRY-related high mobility (Sox9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!