When data fail to support fully mechanistic models, alternative modeling strategies must be pursued. Simpler, more empirical models or the fixing of various rate constants are necessary to avoid over-parameterization. Fitting empirical models can dilute information, limit interpretation, and cloud inference. Fixing rate constants requires external, relevant, and reliable information on the mechanism and can introduce subjectivity as well as complicate determining the validity of model extrapolation. Furthermore, both these methods ignore the possibility that failure of the data to support the mechanistic model could contain information about the pharmacodynamic process. If the pathway has processes with "fast" dynamics, these steps could collapse yielding parametrically simpler classes of models. The collapsed models would retain the mechanistic interpretation of the full model, which is crucial for performing substantive inference, while reducing the number of parameters to be estimated. These concepts are illustrated through their manifestations on the dose-effect relationship and ensuing dose selection for a proof of concept study. Specifically, a mechanistic model for a selective irreversible antagonist was posited and candidate classes of models were derived utilizing "fast dynamics" assumptions. Model assessment determined the rate-limiting step facilitating pertinent inference with respect to the mechanism. For comparison, inference using a more empirical modeling strategy is also presented. A general solution for the collapse of the typical PK-PD model differential equations is provided in Appendix A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10928-005-0052-0 | DOI Listing |
Int J Biol Macromol
January 2025
School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:
Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.
View Article and Find Full Text PDFPeptides
January 2025
Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, 312000, China.
Hormone replacement therapy (HRT) for postmenopausal syndrome (PMS) carries high risks of undesirable side effects. This study explores irisin as a potential alternative to HRT and investigates the underlying mechanisms. Ovariectomized (OVX) female mice was used as an animal model.
View Article and Find Full Text PDFTheor Popul Biol
January 2025
Otto von Guericke University Magdeburg, Institute for Intelligent Cooperating Systems, Universitatsplatz 2, 39106, Sachsen-Anhalt, Germany.
Although extensively studied, the maintenance of biodiversity remains a highly debated and investigated topic of contemporary research in ecology. Several studies have quantified the contributions of various coexistence mechanisms to biodiversity. However, often stochastic individual-level interactions are abstracted away, or mechanisms are studied in isolation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, 519087 Zhuhai, China.
The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!