Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schrödinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature04251 | DOI Listing |
J Feline Med Surg
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
Objectives: The objective of this study was to compare plasma glucagon-like peptide-2 (GLP-2) concentrations in cats with chronic enteropathies (CE) with those of healthy cats.
Methods: Nineteen client-owned cats with a histopathologic diagnosis of either idiopathic chronic enteropathy (CIE) or low-grade lymphoma and six healthy client-owned cats were enrolled in a prospective study between 2 December 2021 and 9 June 2023. Fasted and postprandial plasma GLP-2 concentrations were measured via ELISA in CE cats at the time gastrointestinal biopsies were obtained and before CE treatment.
Front Immunol
January 2025
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
[This corrects the article DOI: 10.3389/fcimb.2024.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Electronic address:
Hybrid continuous-variable (CV) and discrete-variable (DV) entanglement is an essential quantum resource of hybrid quantum information processing, which enables one to overcome the intrinsic limitations of CV and DV quantum protocols. Besides CV and DV quantum variables, introducing more degrees of freedom provides a feasible approach to increase the information carried by the entangled state. Among all the degrees of freedom of photons, orbital angular momentum (OAM) has potential applications in enhancing the communication capacity of quantum communication and precision of quantum measurement.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
As a type of century-old catalyst, the use of iron-based materials runs through the Haber-Bosch process and electrochemical synthesis of ammonia because of its excellent capability, low cost, and abundant reserves. How to continuously improve its catalytic activity and stability for electrochemical nitrogen fixation has always been a goal pursued by scientific researchers. Herein, we develop a free-standing iron-based catalyst, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!