Estimates of cerebral blood volume (CBV) obtained from dynamic contrast T2(*)-weighted magnetic resonance imaging (MRI) tend to be significantly higher than values obtained by other methods. This may relate to the common assumption that the proportionality constants relating signal change to contrast concentration are equal in tissue and artery. To test this hypothesis and provide estimates for the ratio of those proportionality constants, the authors compared measurements of CBV by both MRI and computed tomography (CT) scans in nine healthy volunteers obtained using identical kinetic paradigms for the two imaging modalities. Both boluses and infusions of contrast were studied. Measurements were made in nine anatomic regions of interest of the cerebral hemispheres bilaterally. Cerebral blood volume values obtained by CT were generally lower than those obtained by MRI, especially in the cerebral cortex. As a result, the calculated values of the ratios of proportionality constants relating signal change to concentration in tissue and artery after bolus injections were significantly less than 1 in cortex (0.69) and white matter (0.76), although not in deep gray matter structures (0.87). Values of the ratios based on infusion measurements were closer to 1. In addition, CBV measurement errors with bolus MRI were significantly larger than those observed with infusion MRI or by CT. The reasons that the constants differ from 1 and for the larger variance of bolus MRI are discussed in terms of the T2* signal mechanisms. These studies help define the magnitude by which CBV is overestimated with typical T2*-weighted perfusion imaging. Infusion measurements of CBV can reduce the variance intrinsic to T2* MRI and lessen the likelihood of type II error.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.jcbfm.9600242DOI Listing

Publication Analysis

Top Keywords

constants relating
12
relating signal
12
signal change
12
cerebral blood
12
blood volume
12
proportionality constants
12
change contrast
8
contrast concentration
8
mri
8
t2* mri
8

Similar Publications

Average Time-Delays for the Scattering of O Atoms from O Molecules.

J Chem Theory Comput

January 2025

Laboratoire ICB, UMR-6303 CNRS/uB, Université de Bourgogne, 9 avenue Alain Savary, 21078 Cedex Dijon, France.

We report full quantum-computed average microcanonical, initial state-specific, and canonical cumulative time-delays associated with the O + O scattering, presented as a function of total energy (in relation to an idealized molecular beam experiment) or temperature (for the properties of the gas phase in bulk conditions). We show that these quantities are well-defined and computable, with a temperature-dependent (canonical) time-delay presenting a smooth, monotonic decreasing behavior with temperature, despite an energy-dependent (microcanonical) time-delay of apparent chaotic character. We discuss differences in behavior when considering isotopic variations, O + OO and O + OO, with respect to the reference process O + OO and reveal a greater magnitude of the cumulative time-delay when genuinely reactive events can take place, in the presence of O.

View Article and Find Full Text PDF

Global practical tracking control via output feedback for more general nonlinear systems.

ISA Trans

January 2025

School of Electrical Engineering, University of Jinan, Jinan, Shandong 250022, China. Electronic address:

This paper focuses on the issue of global practical tracking control by output feedback for uncertain nonlinear systems with unknown control coefficients and unknown reference signal. Unlike other tracking works, the upper and lower bounds of the unknown control coefficients in the studied nonlinear system are not required to be known, while the nonlinearities are bounded by the unmeasured states multiplying an unknown constant, the polynomial-of-output and the polynomial-of-input. Inspired by related works, an adaptive tracking controller based on a new dynamic high gain has been successfully constructed by combining the universal control idea and the concept of dead-zone with backstepping technique, which effectively handles the impacts of multiple uncertainties.

View Article and Find Full Text PDF

Background: The humeral head resurfacing arthroplasty (HHR) is normally used as a hemi shoulder arthroplasty and has been in use for the treatment of Gleno-Humeral osteoarthritis (OA) of the shoulder for more than 30 years. Some studies, however, shows that anatomical total shoulder arthroplasty provides better improvement in function than a HHR for patients with OA. Reasons for this may be a progressive glenoid wear (GW) or loosening of the HHR.

View Article and Find Full Text PDF

Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.

View Article and Find Full Text PDF

Purpose: The present review investigates the responses of heart rate variability indices following high-intensity interval aerobic exercise, comparing it with moderate-intensity continuous exercise in adults, with the aim of informing clinical practice.

Methods: Searches were conducted in four databases until March 2023. Eligible studies included randomized controlled trials that assessed heart rate variability indices such as the standard deviation of normal-to-normal heartbeat intervals (SDNN), the root mean square of successive differences (RMSSD), the proportion of the number of pairs of successive normal-to-normal (NN or R-R) intervals that differ by more than 50 ms (NN50) divided by the total number of NN intervals (pNN50), power in high frequency range (HF), power in low frequency range (LF), and LF/HF before and after high-intensity interval and moderate-intensity continuous aerobic exercise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!