Background: Pressure-control ventilation (PCV) and pressure-regulated volume-control (PRVC) ventilation are used during lung-protective ventilation because the high, variable, peak inspiratory flow rate (V (I)) may reduce patient work of breathing (WOB) more than the fixed V (I) of volume-control ventilation (VCV). Patient-triggered breaths during PCV and PRVC may result in excessive tidal volume (V(T)) delivery unless the inspiratory pressure is reduced, which in turn may decrease the peak V (I). We tested whether PCV and PRVC reduce WOB better than VCV with a high, fixed peak V (I) (75 L/min) while also maintaining a low V(T) target.
Methods: Fourteen nonconsecutive patients with acute lung injury or acute respiratory distress syndrome were studied prospectively, using a random presentation of ventilator modes in a crossover, repeated-measures design. A target V(T) of 6.4 + 0.5 mL/kg was set during VCV and PRVC. During PCV the inspiratory pressure was set to achieve the same V(T). WOB and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100).
Results: There was a nonsignificant trend toward higher WOB (in J/L) during PCV (1.27 + 0.58 J/L) and PRVC (1.35 + 0.60 J/L), compared to VCV (1.09 + 0.59 J/L). While mean V(T) was not statistically different between modes, in 40% of patients, V(T) markedly exceeded the lung-protective ventilation target during PRVC and PCV.
Conclusions: During lung-protective ventilation, PCV and PRVC offer no advantage in reducing WOB, compared to VCV with a high flow rate, and in some patients did not allow control of V(T) to be as precise.
Download full-text PDF |
Source |
---|
Respir Res
December 2024
Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, Australia.
By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.
View Article and Find Full Text PDFAnn Ital Chir
December 2024
Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002 Yangzhou, Jiangsu, China.
Aim: Intraoperative lung-protective ventilation strategies (LPVS) have been shown to improve lung oxygenation and prevent postoperative pulmonary problems in surgical patients. However, the application of positive end-expiratory pressure (PEEP)-based LPVS in emergency traumatic brain injury (TBI) has not been thoroughly explored. The purpose of this study is to evaluate the effects of drive pressure-guided individualized PEEP on perioperative pulmonary oxygenation, postoperative pulmonary complications, and recovery from neurological injury in patients with TBI.
View Article and Find Full Text PDFSemin Cardiothorac Vasc Anesth
December 2024
NHS Wales Joint Commissioning Committee, Pontypridd, UK.
Background: While several studies have summarised the clinical effectiveness evidence for extracorporeal membrane oxygenation (ECMO), there are no evidence syntheses of the impact of centres' ECMO patient volume on patient outcomes or the impact of bedside ECMO care being delivered by either a perfusionist or a nurse. There is also limited information on the cost-effectiveness of ECMO.
Purpose: This review was carried out to evaluate the clinical effectiveness and cost of different service delivery models of pulmonary ECMO to inform NHS Wales commissioning policy.
Intensive Care Med Exp
December 2024
Division of Intensive Care, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, Geneva, Switzerland.
Background: Patients with brain damage often require mechanical ventilation. Although lung-protective ventilation is recommended, the application of increased positive end-expiratory pressure (PEEP) has been associated with elevated intracranial pressure (ICP) due to altered cerebral venous return. This study investigates the effects of flow-controlled ventilation (FCV) using negative end-expiratory pressures (NEEP), on cerebral hemodynamics in a swine model of intracranial hypertension.
View Article and Find Full Text PDFTransl Pediatr
November 2024
Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
Background And Objective: Despite significant advancements in the safe delivery of anesthesia and improvements in surgical techniques, postoperative respiratory complications (PRCs) remain a serious concern. PRCs can lead to increased length of hospital stay, worsened patient outcomes, and higher hospital and postoperative costs. Perioperative lung injury and PRCs are more common in children than in adults owing to children's unique physiology and anatomical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!