By use of time-resolved spectroscopy it is possible to separate light scattering effects from chemical absorption effects in samples. In the study of propagation of short light pulses in turbid samples the reduced scattering coefficient and the absorption coefficient are usually obtained by fitting diffusion or Monte Carlo models to the measured data by use of numerical optimization techniques. In this study we propose a prediction model obtained with a semiparametric modeling technique: the least-squares support vector machines. The main advantage of this technique is that it uses theoretical time dispersion curves during the calibration step. Predictions can then be performed by use of data measured on different kinds of sample, such as apples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.44.007091DOI Listing

Publication Analysis

Top Keywords

least-squares support
8
support vector
8
vector machines
8
time-resolved spectroscopy
8
machines modelization
4
modelization time-resolved
4
spectroscopy time-resolved
4
spectroscopy separate
4
separate light
4
light scattering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!