AI Article Synopsis

  • Standardized ileal digestibility estimates amino acid digestibility but doesn't account for bioavailability, leading to the need for a quicker testing method.
  • The study tested the indicator amino acid oxidation (IAAO) method to measure "metabolic availability" of lysine in pigs, showing that changes in indicator oxidation corresponded to lysine availability.
  • Results indicated that heating peas reduced lysine bioavailability, but adding free lysine improved the situation; IAAO effectively detected these differences in metabolic availability, providing results within two weeks.

Article Abstract

Standardized ileal ("true") digestibility is currently the best estimate of amino acid digestibility, but it does not measure bioavailability. Growth assays to determine amino acid bioavailability are expensive and laborious; thus, a rapid method is needed. Applying the principle of slope-ratio assay to the indicator amino acid oxidation (IAAO) method, we hypothesized that the reduction in indicator oxidation per gram of lysine in feedstuffs relative to that per gram of free lysine represented the bioavailability of lysine, here termed "metabolic availability." Indicator oxidation in pigs was linear over increasing lysine intakes (r = 0.90, P = 0.001) when the dietary lysine contents were 2 SD below the mean lysine requirement of the pigs. Peas were treated (raw, heated to reduce lysine availability, or heated with added lysine) to test the responsiveness of the IAAO to differing lysine availability. Free lysine reduced indicator oxidation by 3.16% of dose oxidized per gram added lysine, whereas the addition of protein lysine as raw (-2.81%) and heated peas (-1.73%) reduced oxidation to a lesser degree. Adding free lysine to heated peas decreased indicator oxidation, evidence that heating had worsened the utilization of pea protein for protein synthesis by reducing the bioavailability of lysine alone. Pea diets differed only in the availability of lysine; therefore IAAO detected differences in lysine bioavailability. Because the IAAO technique responds to lysine available at the sites of protein synthesis, the metabolic availability covers all losses during digestion, absorption, and utilization of lysine. This method can determine the metabolic availability of amino acids of a feedstuff within 2 wk.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/135.12.2866DOI Listing

Publication Analysis

Top Keywords

lysine
18
amino acid
16
indicator oxidation
16
free lysine
12
indicator amino
8
acid oxidation
8
availability amino
8
amino acids
8
gram lysine
8
bioavailability lysine
8

Similar Publications

The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.

View Article and Find Full Text PDF

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.

View Article and Find Full Text PDF

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing , along with the double-recessive mutant lines containing , , and . The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (, , and ) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!