In response to inflammation or injury, airway epithelial cells express inducible genes that may contribute to allergen-induced airway remodeling. To determine the contribution of epithelial cell NF-kappaB activation to the remodeling response, we generated CC10-Cre(tg)/Ikkbeta(delta/delta) mice in which NF-kappaB signaling through IkappaB kinase beta (IKKbeta) is selectively ablated in the airway epithelium by conditional Cre-recombinase expression from the Clara cell (CC10) promoter. Repetitive ovalbumin challenge of mice deficient in airway epithelial IKKbeta prevented nuclear translocation of the RelA NF-kappaB subunit only in airway epithelial cells, resulting in significantly lower peribronchial fibrosis in CC10-Cre(tg)/Ikkbeta(delta/delta) mice compared with littermate controls as assessed by peribronchial trichrome staining and total lung collagen content. Levels of airway mucus, airway eosinophils, and peribronchial CD4+ cells in ovalbumin-challenged mice were also reduced significantly upon airway epithelial Ikkbeta ablation. The diminished inflammatory response was associated with reduced expression of NF-kappaB-regulated chemokines, including eotaxin-1 and thymus- and activation-regulated chemokine, which attract eosinophils and Th2 cells, respectively, into the airway. The number of peribronchial cells expressing TGF-beta1, as well as TGF-beta1 amounts in bronchoalveolar lavage, were also significantly reduced in mice deficient in airway epithelium IKKbeta. Overall, these studies show an important role for NF-kappaB regulated genes in airway epithelium in allergen-induced airway remodeling, including peribronchial fibrosis and mucus production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1308936PMC
http://dx.doi.org/10.1073/pnas.0509235102DOI Listing

Publication Analysis

Top Keywords

airway epithelium
16
airway epithelial
16
airway
13
peribronchial fibrosis
12
fibrosis mucus
8
mucus production
8
ikappab kinase
8
genes airway
8
epithelial cells
8
allergen-induced airway
8

Similar Publications

Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells.

Cell Prolif

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration.

View Article and Find Full Text PDF

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

Targeting alarmins in asthma- From the bench to the clinic.

J Allergy Clin Immunol

January 2025

Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.

Over the past two decades, mechanistic studies of allergic and type 2 (T2)-mediated airway inflammation have led to multiple approved therapies for the treatment of moderate-to-severe asthma. The approval and availability of these monoclonal antibodies targeting immunoglobulin E, a type 2 cytokine (IL-5) and/or cytokine receptors (IL-5Rα, IL-4Rα) has been central to the progresses made in the management of moderate-to-severe asthma over this period. However, there are persistent gaps in clinician's ability to provide precise care given that many patients with type 2-high asthma do not respond to the IgE or T2 cytokine-targeting therapies and patients with type 2-low asthma have limited therapeutic options.

View Article and Find Full Text PDF

L. (noni) is native to the tropical and semitropical areas and has been commercially available in health food stores and chain grocery stores specializing in natural foods, recently. Noni seeds are discarded as waste products through the industrial production of noni juice even though their bioactivity components might be a potential source of functional foods.

View Article and Find Full Text PDF

Optimization of chemical transfection in airway epithelial cell lines.

BMC Biotechnol

January 2025

Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Healthcare Research Institute, University of British Columbia, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.

Background: Chemical transfection is a widely employed technique in airway epithelium research, enabling the study of gene expression changes and effects. Additionally, it has been explored for its potential application in delivering gene therapies. Here, we characterize the transfection efficiency of EX-EGFP-Lv105, an EGFP-expressing plasmid into three cell lines commonly used to model the airway epithelium (1HAEo-, 16HBE14o-, and NCI-H292).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!