A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative proteomic analysis provides new insights into chilling stress responses in rice. | LitMetric

Comparative proteomic analysis provides new insights into chilling stress responses in rice.

Mol Cell Proteomics

Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Published: March 2006

Low temperature is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of chilling stress responses in rice (Oryza sativa L. cv. Nipponbare), we carried out a comparative proteomic analysis. Three-week-old rice seedlings were treated at 6 degrees C for 6 or 24 h and then recovered for 24 h. Chilling treatment resulted in stress phenotypes of rolling leaves, increased relative electrolyte leakage, and decreased net photosynthetic rate. The temporal changes of total proteins in rice leaves were examined using two-dimensional electrophoresis. Among approximately 1,000 protein spots reproducibly detected on each gel, 31 protein spots were down-regulated, and 65 were up-regulated at least at one time point. Mass spectrometry analysis allowed the identification of 85 differentially expressed proteins, including well known and novel cold-responsive proteins. Several proteins showed enhanced degradation during chilling stress, especially the photosynthetic proteins such as Rubisco large subunit of which 19 fragments were detected. The identified proteins are involved in several processes, i.e. signal transduction, RNA processing, translation, protein processing, redox homeostasis, photosynthesis, photorespiration, and metabolisms of carbon, nitrogen, sulfur, and energy. Gene expression analysis of 44 different proteins by quantitative real time PCR showed that the mRNA level was not correlated well with the protein level. In conclusion, our study provides new insights into chilling stress responses in rice and demonstrates the advantages of proteomic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M500251-MCP200DOI Listing

Publication Analysis

Top Keywords

chilling stress
16
proteomic analysis
12
stress responses
12
responses rice
12
comparative proteomic
8
insights chilling
8
protein spots
8
proteins
7
analysis
5
chilling
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!