Positively charged mitoxantrone (MTO) was absorbed by negatively charged blank bovine serum albumin (BSA) and chitosan (CS) nanospheres to form MTO-BSA-NS and MTO-CS-NS, respectively. In addition to other conditions, values of pH of every step were optimized. On optimized conditions, MTO-BSA-NS of a mean size of 77 nm with an encapsulation yield (EY) of (98.86+/-1.43)% [drug loading rate (DL) (19.82+/-0.29)%] and MTO-CS-NS of a mean size of 75 nm with an EY of (97.57+/-1.00)% [DL (9.78+/-0.10)%] were obtained. After lyophilization and sterilization by (60)Co, the mean size increased about 10% but no significant change was observed in EY and DL. Tests for in vitro release in physiological saline or physiological saline containing 0.5% (w/v) ascorbic acid by a dialysis bag showed sustained release and little burst effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2005.09.037 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran.
Int J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFJ Dent
January 2025
Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:
Objective: This study aimed to develop dual-functional CMC-LYZ-ACP nanogels. Three different antibacterial substances, tea polyphenols (TPs), silver nitrate (AgNO), and chlorhexidine (CHX) are then combined to form three dual-functional CMC-LYZ-ACP nanogels for remineralization and antibacterial purposes.
Methods: An in vitro model of Streptococcus mutans biofilm was established to analyze the inhibitory effect of the antibacterial-remineralizing dual-functional nanogels on the biofilm.
Photodiagnosis Photodyn Ther
December 2024
Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan. Electronic address:
Objective: Antimicrobial photodynamic therapy (aPDT) is considered a potential treatment for biofilm infections, which have become an increasing health issue because of the rise in antimicrobial resistance. This study aimed to evaluate the bactericidal effect of aPDT using indocyanine green-loaded nanospheres with chitosan coating (ICG-Nano/c) against polymicrobial periodontal biofilms.
Methods: Composite biofilms of Porphyromonas gingivalis and Streptococcus gordonii were constructed in 96-well plates, and aPDT with ICG-Nano/c and an 810 nm diode laser was performed either by direct irradiation or transmitting irradiation through a 3-mm-thick gingival model.
Front Immunol
October 2024
College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!