Liver targeting of catalase by cationization for prevention of acute liver failure in mice.

J Control Release

Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address:

Published: January 2006

To achieve hepatic delivery of CAT for the prevention of CCl4-induced acute liver failure in mice, two types of cationized CAT derivatives, HMD- and ED-conjugated CAT, were developed. Slight structural changes occurred during cationization and the number of increased free amino groups was 3.1 in HMD-CAT and 13.6 in ED-CAT. 111In-cationized CAT derivatives showed an increased binding to HepG2 cells, and were rapidly taken up by the liver. H2O2-induced cytotoxicity in HepG2 cells was significantly prevented by preincubation of the cells with cationized CAT derivatives. A bolus intravenous injection of the cationized CAT derivatives reduced the hepatotoxicity induced by CCl4 in mice. The ED-CAT, which showed more rapid and greater binding to the liver than the HMD-CAT, exhibited more beneficial effects as far as all the parameters examined (serum GOT, GPT, LDH and hepatic GSH) were concerned, suggesting that a high degree of cationization is effective in delivering CAT to the liver to prevent CCl4-induced hepatotoxicity. These results suggest that cationized CAT derivatives are effective in preventing acute liver failure, and ED-based cationization is a suitable method for developing liver-targetable cationized CAT derivatives, because it provides CAT with a high degree of cationization and a high remaining enzymatic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2005.10.016DOI Listing

Publication Analysis

Top Keywords

cat derivatives
24
cationized cat
20
acute liver
12
liver failure
12
cat
10
failure mice
8
hepg2 cells
8
high degree
8
degree cationization
8
liver
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!