The adhesion ligand RGD has been coupled to various materials to be used as tissue culture matrices or cell transplantation vehicles, and recent studies indicate that nanopatterning RGD into high-density islands alters cell adhesion, proliferation, and differentiation. However, elucidating the impact of nanopattern parameters on cellular responses has been stymied by a lack of understanding of the actual ligand presentation within these systems. We have developed a multi-scale predictive modeling approach to characterize the adhesion ligand nanopatterns within an alginate hydrogel matrix. The models predict the distribution of ligand islands, the spacing between ligands within an island and the fraction of ligands accessible for cell binding. These model predictions can be used to select pattern parameter ranges for experiments on the effects of individual parameters on cellular responses. Additionally, our technique could also be applied to other polymer systems presenting peptides or other signaling molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2005.10.037 | DOI Listing |
J Chem Inf Model
December 2024
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFInorg Chem
December 2024
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand.
The potential sesquiterpene lactone groups from the Vernonia genus; namely vernolide-A, vernolide-B, and vernodalin, have been reported for anticancer effects by downregulating cancer promoter proteins. Nevertheless, prior investigations have failed to identify the target proteins that are associated with the compounds' actions. Subsequently, the present investigation attempts to identify the target proteins associated with cancer.
View Article and Find Full Text PDFJ Immunother
December 2024
Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea.
Dendritic cells (DCs) are specialized immune cells that play a crucial role in presenting antigens and activating cytotoxic T lymphocytes to combat tumors. The immune checkpoint receptor programmed cell death-1 (PD-1) can bind to its ligand programmed cell death-ligand 1 (PD-L1), which is expressed on the surface of cancer cells. This interaction suppresses T-cell activation and promotes immune tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!