The insulinotropic activity of KCP256 [(R)-8-benzyl-2-cyclopentyl-7, 8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one hydrochloride] was examined using MIN6 cells (a pancreatic beta-cell line) and pancreatic islets isolated from rats. Unlike sulfonylurea anti-diabetic drugs, KCP256 dose-dependently (0.1-10 microM) enhanced insulin secretion from MIN6 cells and its insulinotropic effect was exerted only at high concentrations of glucose (8.3-22 mM) but not at low concentrations of glucose (3.3-5.5 mM). Furthermore, the action mechanism of KCP256 was different because, unlike sulfonylurea drugs, KCP256 did not displace the binding of [3H]glibenclamide, and did not inhibit the 86Rb+ efflux nor K(ATP) channel activity. In isolated islets, KCP256 also enhanced insulin secretion in a dose- and a glucose-concentration-dependent manner. Plasma levels of insulin after glucose challenge in KCP256-administrated rats were higher than those in vehicle-administrated animals, indicating that KCP256 can enhance insulin secretion in vivo. Since the insulinotropic activity of KCP256 only occurs at high concentrations of glucose, this novel drug may exhibit a decreased risk of drug-induced hypoglycemia compared with sulfonylurea drugs when treating patients with diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2005.10.033DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
concentrations glucose
12
kcp256
8
insulinotropic activity
8
activity kcp256
8
min6 cells
8
drugs kcp256
8
enhanced insulin
8
high concentrations
8
sulfonylurea drugs
8

Similar Publications

A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes.

Life Sci

January 2025

Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:

Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.

View Article and Find Full Text PDF

Context: Defects in insulin secretion and action contribute to the progression of prediabetes to diabetes. However, the contribution of α-cell dysfunction to this process has been unclear.

Objective: Understand the relative contributions of α-cell and β-cell dysfunction to declining glucose tolerance.

View Article and Find Full Text PDF

We assessed whether there is an impactful glucose fraction independent of insulin secretion in autoantibody-positive individuals. Baseline 2-h oral glucose tolerance test data from the TrialNet Pathway to Prevention (TNPTP; = 6190) and Diabetes Prevention Trial-Type 1 (DPT-1; = 705) studies were used. Linear regression of area under the curve (AUC) glucose versus Index60 was performed to identify two fractions: dependent (dAUCGLU) or independent (iAUCGLU) of insulin secretion.

View Article and Find Full Text PDF

Hypoglycemic Effect of Ginsenoside Compound K Mediated by N-Acetylserotonin Derived From Gut Microbiota.

Phytother Res

January 2025

Engineering Research Center of Applied Technology of Pharmacogenomics (Ministry of Education, China), Hunan Key Laboratory of Pharmacomicrobiomics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.

Ginsenoside compound K (GCK) has been proved to have great hypoglycemic effect pertinent to gut microbiota. However, the improvement of high-fat-diet (HFD)-induced type 2 diabetes (T2D) as well as the mechanism of GCK mediated by gut microbiota is not well-known. This study aimed to investigate the hypoglycemic effects and mechanism of GCK on a HFD-induced diabetic mouse model.

View Article and Find Full Text PDF

Bradykinin attenuates NiSO-induced autophagy in MIN6 cells and protects islet function in mice by regulating the PI3K/AKT/mTOR signaling pathway.

Biochem Biophys Res Commun

December 2024

Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China. Electronic address:

Previous studies have shown that nickel sulfate (NiSO) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO increases pancreatic autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!