Catalytic asymmetric synthesis of the natural antibiotic fostriecin (CI-920) and its analogue 8-epi-fostriecin and evaluation of their biological activity are described. We used four catalytic asymmetric reactions to construct all of the chiral centers of fostriecin and 8-epi-fostriecin; cyanosilylation of a ketone, Yamamoto allylation, direct aldol reaction, and Noyori reduction, two of which were developed by our group. Catalytic enantioselective cyanosilylation of ketone 13 produced the chiral tetrasubstituted carbon at C-8. Both enantiomers of the product cyanohydrin were obtained with high enantioselectivity by switching the center metal of the catalyst from titanium to gadolinium. Yamamoto allylation constructed the C-5 chiral carbon in the alpha,beta-unsaturated lactone moiety. A direct catalytic asymmetric aldol reaction of an alkynyl ketone using LLB catalyst constructed the chirality at C-9 with the introduction of a synthetically versatile alkyne moiety, which was later converted to cis-vinyl iodide, the substrate for the subsequent Stille coupling for the triene synthesis. Noyori reduction produced the secondary alcohol at C-11 from the acetylene ketone 6 with excellent selectivity. Importantly, all the stereocenters were constructed under catalyst control in this synthesis. This strategy should be useful for rapid synthesis of stereoisomers of fostriecin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0562043 | DOI Listing |
Acc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFOrg Lett
January 2025
Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
Developed Co-MgO/TiO was applicable to C-N bond formation by direct amination of primary and secondary alcohols with NH via a borrowing hydrogen protocol. Selective synthesis of primary, secondary, and tertiary amines was achieved by controlling the reaction conditions. Asymmetric secondary amines can be synthesized by the coupling of alcohols and amines.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany.
For decades, advances in chiral transition metal catalysis have been closely tied to the development of customized chiral ligands. Recently, however, an alternative approach to this traditional metal-plus-chiral-ligand method has emerged. In this new strategy, chiral transition metal catalysts are composed entirely of achiral ligands, with the overall chirality originating exclusively from a stereogenic metal center.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, PR China.
Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.
Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!