Calcium entry into myocytes drives contraction of the embryonic heart. To prepare for the next contraction, myocytes must extrude calcium from intracellular space via the Na+/Ca2+ exchanger (NCX1) or sequester it into the sarcoplasmic reticulum, via the sarcoplasmic reticulum Ca2+-ATPase2 (SERCA2). In mammals, defective calcium extrusion correlates with increased intracellular calcium levels and may be relevant to heart failure and sarcoplasmic dysfunction in adults. We report here that mutation of the cardiac-specific NCX1 (NCX1h) gene causes embryonic lethal cardiac arrhythmia in zebrafish tremblor (tre) embryos. The tre ventricle is nearly silent, whereas the atrium manifests a variety of arrhythmias including fibrillation. Calcium extrusion defects in tre mutants correlate with severe disruptions in sarcomere assembly, whereas mutations in the L-type calcium channel that abort calcium entry do not produce this phenotype. Knockdown of SERCA2 activity by morpholino-mediated translational inhibition or pharmacological inhibition causes embryonic lethality due to defects in cardiac contractility and morphology but, in contrast to tre mutation, does not produce arrhythmia. Analysis of intracellular calcium levels indicates that homozygous tre embryos develop calcium overload, which may contribute to the degeneration of cardiac function in this mutant. Thus, the inhibition of NCX1h versus SERCA2 activity differentially affects the pathophysiology of rhythm in the developing heart and suggests that relative levels of NCX1 and SERCA2 function are essential for normal development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1308882PMC
http://dx.doi.org/10.1073/pnas.0502683102DOI Listing

Publication Analysis

Top Keywords

calcium extrusion
12
calcium
10
calcium entry
8
sarcoplasmic reticulum
8
intracellular calcium
8
calcium levels
8
tre embryos
8
serca2 activity
8
tre
5
extrusion critical
4

Similar Publications

Apexification is a crucial procedure for achieving apical healing in non-vital teeth with open apices. Traditionally, calcium hydroxide has been used for this purpose, but it has significant drawbacks, including prolonged treatment duration, increased risk of root fracture, and the potential for porous barrier formation. Mineral trioxide aggregate (MTA) has emerged as a superior alternative due to its biocompatibility, faster setting time, and better sealing properties.

View Article and Find Full Text PDF

The diagnosis of milk fever or hypocalcemia in lactating cows has a significant economic impact on the dairy industry. It is challenging to identify asymptomatic subclinical hypocalcemia (SCH) in transition dairy cows. Monitoring subclinical hypocalcemia in milk samples can expedite treatment and improve the health, productivity, and welfare of dairy cows.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

A new regulation mechanism for KCNN4, the Ca-dependent K channel, by molecular interactions with the Capump PMCA4b.

J Biol Chem

December 2024

Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, 75015, Paris, France. Electronic address:

KCNN4, a Ca-activated K channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system and other physiological mechanisms but its activation is also involved in cancer pathophysiology as well as red blood cell disorders (RBC). The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described seventy years ago.

View Article and Find Full Text PDF

The main principles of management of children with root fractures of permanent teeth in the coronal third are presented using two clinical cases as an example. In the treatment of root fractures in the coronal third, an important condition for success is timely flexible or semi-flexible splinting of the tooth for a sufficiently long period (up to 4 months). In the absence of splinting or significant mobility of the coronal fragment after removal of the splint the probability of pulp necrosis is very high, and the method of choice is treatment with calcium silicate cements with their introduction by orthograde or surgical access.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!