Mutations in the gene encoding for the K+ channel alpha-subunit KCNQ1 have been associated with long QT syndrome and deafness. Besides heart and inner ear epithelial cells, KCNQ1 is expressed in a variety of epithelial cells including renal proximal tubule and gastrointestinal tract epithelial cells. At these sites, cellular K+ ions exit through KCNQ1 channel complexes, which may serve to recycle K+ or to maintain cell membrane potential and thus the driving force for electrogenic transepithelial transport, e.g., Na+/glucose cotransport. Employing pharmacologic inhibition and gene knockout, the present study demonstrates the importance of KCNQ1 K+ channel complexes for the maintenance of the driving force for proximal tubular and intestinal Na+ absorption, gastric acid secretion, and cAMP-induced jejunal Cl- secretion. In the kidney, KCNQ1 appears dispensable under basal conditions because of limited substrate delivery for electrogenic Na+ reabsorption to KCNQ1-expressing mid to late proximal tubule. During conditions of increased substrate load, however, luminal KCNQ1 serves to repolarize the proximal tubule and stabilize the driving force for Na+ reabsorption. In mice lacking functional KCNQ1, impaired intestinal absorption is associated with reduced serum vitamin B12 concentrations, mild macrocytic anemia, and fecal loss of Na+ and K+, the latter affecting K+ homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1308898PMC
http://dx.doi.org/10.1073/pnas.0505860102DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
proximal tubule
12
driving force
12
kcnq1 channel
8
channel complexes
8
na+ reabsorption
8
kcnq1
7
kcnq1-dependent transport
4
transport renal
4
renal gastrointestinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!