Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The analysis of sequences required for alternative splicing of mRNA has predominantly been performed using cell culture systems. However, the phenotype of cultured cells is almost invariably different from that of cells in the intact animal. It is therefore possible that there are significant differences in the regulation of specific splicing reactions in vivo compared to in cell culture. Here, we describe methods for the visualization and analysis of alternative splicing in vivo using transgenic mice. These methods allow for the analysis of the temporal and tissue-specific regulation of alternative splicing both visually and quantitatively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2005.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!