Surface modification of purified fly ash and application in polymer.

J Hazard Mater

Powder Technology R & D Group, Department of Materials Science and Engineering, Tsinghua University, Beijing, China.

Published: May 2006

With the growing general concern about the pollution by fly ash (FA), there has been global interest in its utilization. Purified FA or FA micro-beads are suitable as polymer filling materials because of their density, good dispersity and fluidity of globular particles. However, FA as a filler has not been widely used up to now on account of low whiteness values and low friction of untreated FA surface. In order to improve the FA quality, a surface modification method by using isothermal heating is proposed in this paper. Preparation of composite fly ash (CFA) in the Ca(OH)(2)-H(2)O-CO(2) system is described. Good coating results on FA surfaces can be achieved under suitable operating parameters. The characteristics of CFA are discussed and analyzed based on data from X-ray diffraction, scanning electron microscopy (SEM), infrared spectra, and BET multiple-point nitrogen adsorption method. Feedstocks with less than 45 microm grain size, 2.86 m(2) g(-1) specific surface area, and 36.68 whiteness value revealed an increase in specific surface area ranging from 8.69 to 10.01 m(2) g(-1) and an increase in whiteness values ranging from 63.67 to 73.13 after coating. A SEM study allowed a detailed determination of the morphology of the surface roughness. Filling tests also show that a rough surface of the CFA enhances contact opportunities and improves the interface between polymer and CFA blended with polypropylene (PP).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2005.10.028DOI Listing

Publication Analysis

Top Keywords

fly ash
12
surface modification
8
whiteness values
8
specific surface
8
surface area
8
surface
7
modification purified
4
purified fly
4
ash application
4
application polymer
4

Similar Publications

The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

In the framework of sustainable development and environmental preservation, this research aims to improve the stability and frost resistance of sulfate saline soil by utilizing industrial solid waste. Geopolymer materials containing fly ash (FA) activated by different NaOH concentrations were studied for study on stabilized soil with saline soil, with NaOH concentrations used ranged from 0.1 to 0.

View Article and Find Full Text PDF

Incidental iron oxide nanoclusters drive confined Fenton-like detoxification of solid wastes towards sustainable resource recovery.

Nat Commun

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.

The unique properties of nanomaterials offer vast opportunities to advance sustainable processes. Incidental nanoparticles (INPs) represent a significant part of nanomaterials, yet their potential for sustainable applications remains largely untapped. Herein, we developed a simple strategy to harness INPs to upgrade the waste-to-resource paradigm, significantly reducing the energy consumption and greenhouse gas emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!