Here, we analysed the transition from heterotrophic to autotrophic growth of the epigeal species sunflower (Helianthus annuus), and how transition is affected by CO(2). Growth analysis and steady-state (13)CO(2)/(12)CO(2) and (15)NO(3) (-)/(14)NO(3) (-) labelling were used to quantify reserve- and current assimilation-derived carbon (C) and nitrogen (N) allocation to shoots and roots in the presence of 200 and 1,000 micromol CO(2) mol(-1) air. Growth was not influenced by CO(2) until cotyledons unfolded. Then, C accumulation at elevated CO(2) increased to a rate 2-2.5 times higher than in sub-ambient CO(2) due to increased unit leaf rate (+120%) and leaf expansion (+60%). CO(2) had no effect on mobilization and allocation of reserve-derived C and N, even during the transition period. Export of autotrophic C from cotyledons began immediately following the onset of photosynthetic activity, serving roots and shoots near-simultaneously. Allocation of autotrophic C to shoots was increased at sub-ambient CO(2). The synchrony in transition from heterotrophic to autotrophic supply for different sinks in sunflower contrasts with the sequential transition reported for species with hypogeal germination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!