Lipopolysaccharide (LPS) has been associated with adverse developmental outcomes, including intra-uterine fetal death (IUFD) and intra-uterine growth retardation (IUGR). However, the exact mechanism for LPS-induced IUFD and IURD remains unclear. LPS stimulates macrophages to generate reactive oxygen species (ROS). Therefore, we hypothesize that ROS may be involved in LPS-induced IUFD and IURD. Melatonin is a powerful endogenous antioxidant. In this study, we investigated the protective effects of melatonin on LPS-induced IUFD and IURD in ICR mice. All pregnant mice except controls received an intraperitoneal (75 microg/kg, i.p.) injection of LPS on gestational day (gd) 15-17. The experiment was carried out in two different modes. In mode A, the pregnant mice received two doses of melatonin within 24 hr, one (5 or 10 mg/kg) injected immediately after LPS and the other (5 or 10 mg/kg) injected at 3 hr after LPS. In mode B, the pregnant mice were pretreated with 10 mg/kg of melatonin 18 hr before LPS and then received two doses of melatonin in 24 hr, one (10 mg/kg) injected immediately after LPS and the other (10 mg/kg) injected 3 hr after LPS. The number of live fetuses, dead fetuses and resorption sites were counted on gd 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Results showed that post-treatments with melatonin significantly attenuated LPS-induced IUFD in a dose-dependent manner. Surprisingly, pre- plus post-treatments with melatonin almost blocked LPS-induced IUFD. In addition, both post-treatments and pre- plus post-treatments with melatonin significantly alleviated LPS-induced decreases in crown-rump and tail lengths and reversed LPS-induced skeletal developmental retardation. However, melatonin had little effect on LPS-induced decrease in fetal weight. Furthermore, pre- plus post-treatments with melatonin significantly attenuated LPS-induced lipid peroxidation in maternal liver. These results indicate that melatonin protects against LPS-induced IURD and IUGR via counteracting LPS-induced oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-079X.2005.00274.x | DOI Listing |
Pediatr Res
November 2018
Department of Neonatology, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany.
Background: A pro-inflammatory intrauterine milieu accounts for increased perinatal morbidity and mortality. We asked how maternal inflammation as seen in endotoxemia affects fetal leukocyte recruitment in vivo during late gestation.
Methods: Inflammation was induced in pregnant LysEGFP-mice by intraperitoneal LPS injection between gestational day 14 and 18 (E14-E18).
J Reprod Immunol
December 2013
Department of Developmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, 840-Murodo-cho, Izumi, Osaka 594-1101, Japan.
Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp.
View Article and Find Full Text PDFToxicol Lett
January 2008
Department of Toxicology, Anhui Medical University, Hefei 230032, PR China.
Lipopolysaccharide (LPS) has been associated with adverse developmental outcome, including intra-uterine fetal death (IUFD), intra-uterine growth retardation (IUGR) and neurological injury. In the LPS model, tumor necrosis factor alpha (TNF-alpha) is the major mediator leading to IUFD, IUGR and neurological injury. In the present study, we investigated the effect of maternally-administered LPS on TNF-alpha in maternal serum, amniotic fluid, fetal liver and fetal brain.
View Article and Find Full Text PDFToxicology
May 2007
Department of Toxicology, Anhui Medical University, Hefei, PR China.
Lipopolysaccharide (LPS) has been associated with adverse developmental outcome, including embryonic resorption, intra-uterine fetal death (IUFD), intra-uterine growth retardation (IUGR) and preterm delivery in rodents. The purpose of the present study was to investigate whether administration of a low-dose LPS to the pregnant mice induce a reduced sensitivity to subsequent high-dose LPS-induced IUFD and preterm labor. We found that LPS-induced IUFD was obviously attenuated when the pregnant mice were pretreated with low-dose LPS (10 microg/kg, i.
View Article and Find Full Text PDFJ Pineal Res
January 2006
Department of Toxicology, Anhui Medical University, Hefei, China.
Lipopolysaccharide (LPS) has been associated with adverse developmental outcomes, including intra-uterine fetal death (IUFD) and intra-uterine growth retardation (IUGR). However, the exact mechanism for LPS-induced IUFD and IURD remains unclear. LPS stimulates macrophages to generate reactive oxygen species (ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!