Exposure to microgravity during space flight affects almost all human physiological systems. The affected systems that are of key importance to human space exploration are the musculoskeletal, neurovestibular, and cardiovascular systems. However, alterations in the immune and endocrine functions have also been described. Bone loss has been shown to be site specific, predominantly in the weight-bearing regions of the legs and lumbar spine. This phenomenon has been attributed to a reduction in bone formation resulting from a decrease in osteoblastic function and an increase in osteoclastic resorption. In order to examine the effects of microgravity on cellular function here on earth, several ground-based studies have been performed using different systems to model microgravity. Our studies have shown that modeled microgravity (MMG) inhibits the osteoblastic differentiation of human mesenchymal stem cells (hMSCs) while increasing their adipogenic differentiation. Here, we discuss the potential molecular mechanisms that could be altered in microgravity. In particular, we examine the role of RhoA kinase in maintaining the formation of actin stress fibers and the expression of nitric oxide synthase under MMG conditions. These proposed mechanisms, although only examined in hMSCs, could be part of a global response to microgravity that ultimately alters human physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0105-2896.2005.00330.x | DOI Listing |
Perception
January 2025
Hebei Normal University, China.
Exposure to microgravity induces abnormal experiences that may affect the perception of time. Head-down tilts (HDTs) are commonly used to investigate the effects of weightlessness. A -30° HDT is considered an appropriate model to simulate the acute phase of microgravity exposure.
View Article and Find Full Text PDFNeurosciences (Riyadh)
January 2025
From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.
View Article and Find Full Text PDFPlants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions.
View Article and Find Full Text PDFNPJ Microgravity
January 2025
Aix Marseille Univ, CNRS, ISM, Marseille, France.
The importance of gravity for human motor control is well established, but it remains unclear how the central nervous system accounts for gravitational changes to perform complex motor skills. We tested the hypothesis that microgravity and hypergravity have distinct effects on the neuromuscular control of reaching movements compared to normogravity. To test the influence of gravity levels on sensorimotor planning and control, participants (n = 9) had to reach toward visual targets during parabolic flights.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!