The LAR transmembrane tyrosine phosphatase associates with liprin-alpha proteins and colocalizes with liprin-alpha1 at focal adhesions. LAR has been implicated in axon guidance, and liprins are involved in synapse formation and synapse protein trafficking. Several liprin mutants have weaker binding to LAR as assessed by yeast interaction trap assays, and the extents of in vitro and in vivo phosphorylation of these mutants were reduced relative to that of wild-type liprin-alpha1. Treatment of liprin-alpha1 with calf intestinal phosphatase weakened its interaction with the recombinant GST-LAR protein. A liprin LH region mutant that inhibited liprin phosphorylation did not bind to LAR as assessed by coprecipitation studies. Endogenous LAR was shown to bind phosphorylated liprin-alpha1 from MDA-486 cells labeled in vivo with [32P]orthophosphate. In further characterizing the phosphorylation of liprin, we found immunoprecipitates of liprin-alpha1 expressed in COS-7 cells to incorporate phosphate after washes of up to 4 M NaCl. Additionally, purified liprin-alpha1 derived from Sf-9 insect cells retained the ability to incorporate phosphate in in vitro phosphorylation assays, and a liprin-alpha1 truncation mutant incorporated phosphate after denaturation and/or renaturation in SDS gels. Finally, binding assays showed that liprin binds to ATP-agarose and that the interaction is challenged by free ATP, but not by free GTP. Moreover, liprin LH region mutations that inhibit liprin phosphorylation stabilized the association of liprin with ATP-agarose. Taken together, our results suggest that liprin autophosphorylation regulates its association with LAR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2529169 | PMC |
http://dx.doi.org/10.1021/bi051434f | DOI Listing |
Liprin-α1 is a widely expressed scaffolding protein responsible for regulating cellular processes such as focal adhesion, cell motility, and synaptic transmission. Liprin-α1 interacts with many proteins including ELKS, GIT1, liprin-β, and LAR-family receptor tyrosine protein phosphatase. Through these protein-protein interactions, liprin-α1 assembles large higher-order molecular complexes; however, the regulation of this complex assembly/disassembly is unknown.
View Article and Find Full Text PDFPLoS Biol
December 2023
Department of Biology, Stanford University, Stanford, California, United States of America.
Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation.
View Article and Find Full Text PDFbioRxiv
June 2023
Department of Biology, Stanford University, Stanford, CA, USA.
Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through a liquid-liquid phase separation. Here, we find that the phase separation of SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation.
View Article and Find Full Text PDFLife Sci Alliance
October 2022
Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
CASK is a unique membrane-associated guanylate kinase (MAGUK) because of its Ca/calmodulin-dependent kinase (CaMK) domain. We describe four male patients with a severe neurodevelopmental disorder with microcephaly carrying missense variants affecting the CaMK domain. One boy who carried the p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!