A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite.

J Environ Sci (China)

National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China.

Published: June 2006

MnO2 in pyrolusite can react with SO2 in flue gas and obtain by-product MnSO4 x H2O. A pilot scale jet bubbling reactor was applied in this work. Different factors affecting both SO2 absorption efficiency and Mn2+ extraction rate have been investigated, these factors include temperature of inlet gas flue, ration of liquid/solid mass flow rate (L/S), pyrolusite grade, and SO2 concentration in the inlet flue gas. In the meantime, the procedure of purification of absorption liquid was also discussed. Experiment results indicated that the increase of temperature from 30 to 70 K caused the increase of SO2 absorption efficiency from 81.4% to 91.2%. And when SO2 concentration in the inlet flue gas increased from 500 to 3000 ppm, SO2 absorption efficiency and Mn2+ extraction rate decreased from 98.1% to 82.2% and from 82.8% to 61.7%, respectively. The content of MnO2 in pyrolusite had a neglectable effect on SO2 absorption efficiency. Low L/S was good for both removal of SO2 and Mn2+ extraction. The absorption liquid was filtrated and purified to remove Si, Mg, Ca, Fe, Al and heavy metals, last product MnSO4 x H2O was obtained which quality could reach China GB1622-86, the industry grade standards.

Download full-text PDF

Source

Publication Analysis

Top Keywords

flue gas
16
so2 absorption
16
absorption efficiency
16
mn2+ extraction
12
jet bubbling
8
bubbling reactor
8
mno2 pyrolusite
8
so2
8
mnso4 h2o
8
efficiency mn2+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!