The biomechanics of changing direction while walking has been largely neglected despite its obvious relevancy to functional mobility. The world is filled with turns that must be negotiated. These turns carry an increased risk of injury due to a decrease in stability. A VICON 612 system measured joint kinematics and kinetics on 10 normal subjects for straight line walking (ST); turning, inside foot strike (IN); and turning, outside foot strike (OUT). All trials were completed at a self-selected walking speed and across a range of speeds from 0.6 to 1.3 m/s; the turn radius was 1 m. Significant differences between the conditions were detected using a mixed effects repeated measures ANCOVA with walking speed as a covariate. The most pronounced differences were demonstrated in the mediolateral ground reaction force impulse: in straight walking the impulses tended to shift the body toward the contralateral limb. In turning, the IN and OUT impulses shifted the body toward the ipsilateral and contralateral limbs, respectively. Knee flexion during stance was increased on the IN limb, while ankle plantarflexion increased on the OUT limb consistent with body lean during turning; differences in joint kinetics during turning were negligible. Self-selected turning was significantly slower than walking straight ahead (0.96+/-0.12 m/s versus 1.61+/-0.22 m/s) and turning at very slow speeds showed a non-uniform center of mass trajectory. Understanding the mechanisms of turning will provide insights driving design, therapy and intervention to increase functional navigation in amputees, the elderly and individuals with neuromuscular pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2004.12.008 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
February 2025
Department of Critical Care Medicine, the First Hospital of Tsinghua University, Beijing100016, China.
Turning to critical illness is a common stage of various diseases and injuries before death. Patients usually have complex health conditions, while the treatment process involves a wide range of content, along with high requirements for doctor's professionalism and multi-specialty teamwork, as well as a great demand for time-sensitive treatments. However, this is not matched with critical care professionals and the current state of medical care in China.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
January 2025
Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Electronic address:
Purpose: The clinical prognostic value of monitoring minimal residual disease (MRD) in acute myeloid leukemia (AML) patients undergoing nonintensive treatment remains insufficiently established. The aim of this work was to examine MRD status at various time points, highlighting the potential for pre-emptive therapy to improve patient outcomes.
Methods: Inpatient data from 2017 to 2024 were used in this retrospective study.
Anal Chim Acta
February 2025
Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain. Electronic address:
The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!