Behavior of GM3 ganglioside in lipid monolayers mimicking rafts or fluid phase in membranes.

Chem Phys Lipids

Centre de Physique Moléculaire Optique et Hertzienne (CPMOH), UMR 5798 du CNRS, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France.

Published: January 2006

AI Article Synopsis

Article Abstract

We studied the interaction of GM3 ganglioside with sphingomyelin (SM) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in Langmuir monolayers mimicking, respectively, raft and fluid phase of a cellular membrane, by surface pressure measurements and fluorescence microscopy. No difference was observed in the behavior of SM-GM3 and POPC-GM3 monolayers. In both cases, a GM3 threshold concentration has been underlined between 20 and 40 mol%. Below this threshold, SM-GM3 and POPC-GM3 monolayers behave ideally, suggesting that GM3 and host lipid would form separated domains. On the contrary, above the threshold, a condensation of monolayers is observed. This could be due to a partial solubilisation of GM3 in host lipid, leading to a change in orientation of GM3 molecules at the air-water interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2005.10.003DOI Listing

Publication Analysis

Top Keywords

gm3 ganglioside
8
monolayers mimicking
8
fluid phase
8
sm-gm3 popc-gm3
8
popc-gm3 monolayers
8
gm3 host
8
host lipid
8
monolayers
5
gm3
5
behavior gm3
4

Similar Publications

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

In the present work, bacterial glycosyltransferases are utilized to construct ganglioside glycans in a convergent approach via a sugar‒nucleotide regeneration system and one-pot multienzyme reactions. Starting from β-lactoside enables the diversification of both the glycan moieties and the linkages in the lower α-arm and upper β-arm. Overall, a comprehensive panel of 24 natural a-series (GM3, GM2, GM1a, GD1a, GT1a, and fucosyl-GM1), b-series (GD3, GD2, GD1b, GT1b, and GQ1b), c-series (GT3, GT2, GT1c, GQ1c, and GP1c), α-series (GM1α, GD1aα, and GT1aα), and o-series (GA2, GA1, GM1b, GalNAc-GM1b, and GD1c) ganglioside glycans are prepared, which are suitable for biological studies and further applications.

View Article and Find Full Text PDF

Background: Adoptive cell cancer therapies aim to re-engineer a patient's immune cells to mount an anti-cancer response. Chimeric antigen receptor T and natural killer cells have been engineered and proved successful in treating some cancers; however, the genetic methods for engineering are laborious, expensive, and inefficient and can cause severe toxicities when they over-proliferate.

Results: We examined whether the cell-killing capacity of activated T and NK cells could be targeted to cancer cells by anchoring antibodies to their cell surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!