The role of carbonic anhydrase IX overexpression in kidney cancer.

Eur J Cancer

Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, NY 10466-2697, USA.

Published: December 2005

Carbonic anhydrase IX (CA IX) is a membrane isoenzyme, the overexpression of which is associated with clear cell carcinoma of the kidney. Its overexpression is restricted mainly to cancer, as it is absent in corresponding normal tissues making it a potential cancer biomarker. Several recent studies have shown that CA IX, apart from its classical enzyme activity of reversibly hydrating carbon dioxide extracellularly to facilitate the net extrusion of protons from inside to outside the cell, it can also be a key player in the modulation of cell adhesion processes and participate in the regulation of cell proliferation in response to hypoxic environment to ultimately contribute to tumour progression. Here, we have shown that the sole tyrosine moiety of CA IX present in its intracellular domain can be phosphorylated in an epidermal growth factor dependent manner, suggesting that it can feed into the growth factor receptor dependent signalling pathways. Our studies suggest that the tyrosine phosphorylated CA IX can interact with the regulatory subunit of PI-3-Kinase, contributing to Akt activation. These studies have revealed a positive feed back loop that can form the basis of a vicious cycle that could contribute to the progression of clear cell renal carcinoma and poor prognosis. These studies show that CA IX signalling may be a part of both the hypoxia driven and hypoxia independent pathways that occur in the cancer cell. Finally, our studies emphasize the need for a more refined strategy using signal transduction therapeutics to inhibit the cell surface carbonic anhydrases for the management of this malignancy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2005.09.011DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
clear cell
8
growth factor
8
cell
7
studies
5
role carbonic
4
anhydrase overexpression
4
overexpression kidney
4
cancer
4
kidney cancer
4

Similar Publications

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Exploring the Inhibition of α-Carbonic Anhydrase by Sulfonamides: Insights into Potential Drug Targeting.

Int J Mol Sci

December 2024

Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.

, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Novel 3-sulfonamide pyrrol-2-one derivatives containing two sulfonamide groups were synthesized via a one-pot, three-component method using trifluoroacetic acid as a catalyst. Structural confirmation was achieved using spectroscopic techniques. The compounds were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX, and hCA XII).

View Article and Find Full Text PDF

A series of novel phenyl naphthalene-2-sulfonate-based thiosemicarbazones (5a-v) were synthesized and evaluated for their inhibitory activity against human carbonic anhydrases I and II (hCA I and hCA II). Compounds 5d and 5p demonstrated the highest inhibitory potency, with IC values of 4.32 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!