Hyperhomocysteinemia is regarded as an independent risk factor for vascular diseases, and homocysteine is supposed to contribute to oxidative stress and endothelial damage. Statin therapy is an established intervention to reduce the risk of acute events in patients suffering from cardiovascular diseases. Apart from their lipid-lowering capacity, statins also exert anti-inflammatory and antioxidant effects. As cellular immune activation and oxidative stress play a major role in the pathogenesis of cardiovascular diseases, the anti-inflammatory capacity of statins could partly be responsible for the beneficial effects observed in patients. Earlier we reported that stimulated peripheral blood mononuclear cells (PBMCs) release homocysteine. Here we studied the influence of atorvastatin on homocysteine production in stimulated PBMCs and compared changes in cysteine concentrations and in neopterin production, which is a sensitive indicator of cellular immune activation. Stimulation of human PBMCs with the mitogens concanavalin A and phytohemagglutinin induced significant homocysteine and neopterin production compared to unstimulated cells, whereas cysteine concentrations remained unchanged. Treatment of PBMCs with increasing doses of atorvastatin (10-100 microM) suppressed both biochemical pathways in a dose-dependent manner, and cell proliferation was inhibited in parallel. Again, cysteine levels were not influenced by any treatment. The down-regulating effect of atorvastatin on homocysteine formation in vitro indicates that statins may prevent homocysteine accumulation in the blood via immunosuppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/CCLM.2005.234 | DOI Listing |
Pharmazie
December 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Nutrients
January 2025
University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.
Background/objectives: In recent years, there has been a growing interest in precision nutrition and its potential for disease prevention. Differences in individual responses to diet, especially among populations of different ancestry, have underlined the importance of understanding the effects of genetic variations on nutrient intake (nutrigenomics). Since humans generally cannot synthesize essential vitamins, the maintenance of healthy bodily functions depends on dietary vitamin intake.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!