We have investigated the conformations of the hexadeoxyribonucleotide, L-d(CGCGCG) composed of L-deoxyribose, the mirror image molecule of natural D-deoxyribose. In this paper, we report the synthesis of four L-deoxynucleosides and the L-oligonucleotide-ethidium bromide interactions. The L-deoxyribose synthon 9 was synthesized from L-arabinose with an over all yield of 28.5% via the Barton-McCombie reaction. The L-deoxynucleosides were obtained by a glycosylation of appropriate nucleobase derivatives with the 1-chloro sugar 9. After derivatization to nucleoside phosphoramidites, L-deoxycytidine and L-deoxyguanosine were incorporated into a hexadeoxynucleotide, L-d(CGCGCG) by a solid-phase beta-cyanoethylphosphoramidite method. This L-hexanucleotide was resistant to digestion with nuclease P1. The conformations of L-d(CGCGCG) were an exact mirror image of that of the corresponding natural one as described previously, and the conformations of the L-d(CGCGCG)-ethidium bromide complex were also the mirror images of those of the D-d(CGCGCG)-ethidium bromide complex under both low and high salt conditions. These results suggest that ethidium bromide prefers not a right-handed helical sense, but the base-base stacking geometry of the B-form rather than that of the Z-form. Thus, L-DNA would be a useful tool for studying DNA-drug interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC312484PMC
http://dx.doi.org/10.1093/nar/20.13.3325DOI Listing

Publication Analysis

Top Keywords

mirror image
8
bromide complex
8
synthesis properties
4
properties mirror-image
4
mirror-image dna
4
dna investigated
4
investigated conformations
4
conformations hexadeoxyribonucleotide
4
hexadeoxyribonucleotide l-dcgcgcg
4
l-dcgcgcg composed
4

Similar Publications

Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis.

Sci Rep

January 2025

Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.

View Article and Find Full Text PDF

Optimizing dental implant identification using deep learning leveraging artificial data.

Sci Rep

January 2025

Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Takamatsu, 761-0793, Kagawa, Japan.

This study aims to evaluate the potential enhancement in implant classification performance achieved by incorporating artificially generated images of commercially available products into a deep learning process of dental implant classification using panoramic X-ray images. To supplement an existing dataset of 7,946 in vivo dental implant images, a three-dimensional scanner was employed to create implant surface models. Subsequently, implant surface models were used to generate two-dimensional X-ray images, which were compiled along with original images to create a comprehensive dataset.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging.

View Article and Find Full Text PDF

Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging.

View Article and Find Full Text PDF

We propose and demonstrate an ultra-wide tunable mode-locked all-fiber laser based on nonlinear amplifying loop mirror (NALM) with the output of cylindrical vector beams (CVBs). The tuning range covers from 1029 nm to 1098 nm through the intracavity nonlinear polarization evolution (NPE) filter effect. The switchable CVBs between radially and azimuthally polarized beams with mode purity above 90% are generated by incorporating a broadband few-mode long-period fiber grating (LPFG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!