Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prior brain injury is a major risk factor in the development of Alzheimer's disease. This is true for traumatic brain injury, stroke or ischemic brain injury, and (more speculatively) for brain injury resulting from the hypo-perfusion-reperfusion in cardiac arrest or cardiac bypass surgery and even hypo- or hypertension. Here we propose that the release of excess, toxic, "floods" of free zinc into the brain that occurs during and after all excitotoxic brain injury is a key factor that sets the stage for the later development of Alzheimer's disease. Rapid and aggressive administration of zinc buffering compounds to patients suffering brain injury may therefore not only ameliorate the acute injury but might also reduce the risk of subsequent development of Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/jad-2005-8208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!