In order to confirm the efficacy of dexamethasone (DXM) palmitate incorporated into lipid microspheres (d-lipo) on atherosclerosis, the aortic drug delivery by d-lipo and its antiatherosclerotic effect were investigated. In an in vitro uptake experiment, d-lipo or DXM was added to macrophages and foam cells, and then incubated for 1, 4, 8 and 24 h at 37 degrees C. The uptake of drug by these cells after addition of d-lipo was higher than that of DXM at each time point. In an in vitro pharmacological experiment, the macrophages and foam cells were incubated with d-lipo or DXM for 24 h at 37 degrees C. The inhibitory effect of d-lipo on cellular cholesterol ester (CE) accumulation in these cells was significantly more potent than that of DXM. In an in vivo pharmacokinetic experiment, d-lipo or DXM was intravenously administered to atherogenic mice, and then aorta was collected at 1, 8, and 24 h after administration. The aortic drug concentration after administration of d-lipo to atherogenic mice was higher than that of DXM at each time point. In an in vivo pharmacological experiment, d-lipo or DXM was intravenously administered to atherogenic mice once a week for 7 weeks. The inhibitory effect of d-lipo on the aortic CE accumulation in atherogenic mice was significantly more potent than that of DXM. These findings suggest that efficient drug delivery to the atherosclerotic lesions by d-lipo produces an excellent antiatherosclerotic effect at a lower dose. Therefore, d-lipo may be useful for the development of drug delivery systems for atherosclerotic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10611860500383739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!