The transcription factor Suppressor of Hairless (Su(H)) belongs to the CSL transcription factor family, which are the main transcriptional effectors of the Notch-signaling pathway. Su(H) is the only family member in the Drosophila genome and should therefore be the main transcriptional effector of the Notch pathway in this species. Despite this fact, in many developmental situations, the phenotype caused by loss of function of Su(H) is too weak for a factor that is supposed to mediate most or all aspects of Notch signaling. One example is the Su(H) mutant phenotype during the development of the wing, which is weaker in comparison to other genes required for Notch signaling. Another example is the complete absence of a phenotype upon loss of Su(H) function during the formation of the dorsoventral (D/V) compartment boundary, although the Notch pathway is required for this process. Recent work has shown that Su(H)/CBF1 has a second function as a transcriptional repressor, in the absence of the activity of the Notch pathway. As a repressor, Su(H) acts in a complex together with Hairless (H), which acts as a bridge to recruit the co-repressors Groucho and CtBP, and acts in a Notch-independent manner to prevent the transcription of target genes. This raises the possibility that a de-repression of target genes can occur in the case of loss if function of Su(H). Here, we show that the weak phenotype of Su(H) mutants during wing development and the absence of a phenotype during formation of the D/V compartment boundary are caused by the concomitant loss of the Notch-independent repressor function. This loss of the repressor function of Su(H) results in a de-repression of expression of target genes to a different degree in each process. Loss of Su(H) function during wing development results in a transient de-repression of expression of the selector gene vestigial (vg). We show that this residual expression of vg is responsible for the weaker mutant phenotype of Su(H) in the wing. During the formation of the D/V compartment boundary, de-repression of target genes seems to be sufficiently strong, to compensate the loss of Su(H) activity. Thus, de-repression of its target genes obscures the involvement of Su(H) in this process. Furthermore, we provide evidence that Dx does not signal in a Su(H)-independent manner as has been suggested previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2005.10.008 | DOI Listing |
Breast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFBioData Min
January 2025
The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.
Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
The First Hospital of Lanzhou University, Lanzhou, China.
Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.
Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.
BMC Cancer
January 2025
Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
Background: To investigate the role of the translocase of the outer mitochondrial membrane 40 (TOM40) in oral squamous cell carcinoma (OSCC) with the aim of identifying new biomarkers or potential therapeutic targets.
Methods: TOM40 expression level in OSCC was evaluated using datasets downloaded from The Cancer Genome Atlas (TCGA), as well as clinical data. The correlation between TOM40 expression level and the clinicopathological parameters and survival were analyzed in TCGA.
Sci Rep
January 2025
Department of Gynecology and Obstetrics, First Hospital of Jilin University, Changchun, 130031, Jilin, China.
Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecular markers and their relationship with immune infiltration to potentially inform therapeutic strategies. We used bioinformatics tools to analyze gene expression data from the Gene Expression Omnibus (GEO) database using the GEOquery package in R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!