Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The antianginal agent perhexiline inhibits rat cardiac carnitine palmitoyltransferase-1 (CPT-1) and CPT-2, key enzymes for mitochondrial transport of long-chain fatty acids. We tested the hypothesis that perhexiline, in therapeutic concentrations (2 microM), inhibits palmitate oxidation and enhances glucose oxidation in isolated rat cardiomyocytes and in the working rat heart, thereby increasing efficiency of oxygen utilization. In isolated cardiomyocytes, perhexiline (2 microM) exerted no acute effects on palmitate oxidation, but after 48 hours pre-exposure oxidation was inhibited by perhexiline (2 to 10 microM) by 15% to 35% (P < 0.0002). In non-ischemic working rat hearts (3%BSA, 0.4 mM palmitate, 11 mM glucose, 100 microU/mL insulin) perhexiline (2 microM) had no significant acute effect on cardiac efficiency, palmitate or glucose oxidation, but 24 hours pretreatment with transdermal perhexiline increased cardiac work (by 29%, P < 0.05) and cardiac efficiency (by 30%, P < 0.02) without significant effects on palmitate oxidation. The selective CPT-1 inhibitor oxfenicine (2 mM) inhibited palmitate oxidation and enhanced glucose oxidation, but failed to enhance cardiac efficiency. In conclusion, in the non-ischemic working rat heart, perhexiline increases myocardial efficiency by a mechanism(s) that is largely or entirely independent of its effects on CPT. Effects on cardiac efficiency during ischemia, and with changes in fatty acid oxidation after longer perhexiline pretreatment remain to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.fjc.0000190488.77434.f1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!