Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially "glucose hypersensitization" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.54.suppl_2.s97 | DOI Listing |
Iran J Med Sci
December 2024
Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally, and effective treatments are urgently needed. The present study aimed to investigate the inhibitory effect of Calculus Bovis (CB) on liver cancer and the underlying mechanisms. CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway, thereby suppressing the proliferation of liver cancer cells.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus. Electronic address:
Colorectal cancer (CRC) ranks second in mortality worldwide while metastasis accounts for most CRC-related deaths. Thus, understanding cell migration, a crucial step in metastasis, is imperative for developing new therapies. Growth Differentiation Factor-15 (GDF15), a member of the Transforming Growth Factor β superfamily, is overexpressed in CRC and promotes metastasis with a so far unknown mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!