SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment.

J Cell Sci

Department of Cell Physiology and Metabolism, University Medical Center, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.

Published: December 2005

Synaptic vesicle protein 2 (SV2) is expressed in neuroendocrine cells as three homologous isoforms, SV2A, SV2B and SV2C. Ca2+-dependent function in exocytosis has been attributed to SV2A and SV2B, without elucidation of the mechanism. The role of SV2C has not yet been addressed. Here we characterize the three SV2 isoforms and define their involvement in regulated insulin secretion. SV2A and SV2C are associated with insulin-containing granules and synaptic-like-microvesicles (SLM) in INS-1E insulinoma and primary beta-cells, whereas SV2B is only present on SLM. Neither overexpression nor isoform-specific silencing of SV2A or SV2C by RNA interference modifies depolarization-triggered cytosolic [Ca2+] rises or secretory granule [Ca2+], measured with a VAMP-2 aequorin chimera. This strongly argues against any Ca2+ transport function of SV2. Moreover, up- or downregulation of these isoforms has no influence on K+-induced insulin release suggesting that SV2 does not affect the Ca2+-dependent step(s) of exocytosis. By contrast, glucose-elicited secretion is inhibited during the sustained rather than the early phase, placing the action of SV2 on the recruitment of granules from the reserve pool to the plasma membrane. This conclusion is reinforced by capacitance measurements in glucose-stimulated SV2C-deficient cells. Like capacitance, evoked and basal hormone release are attenuated more by silencing of SV2C compared with SV2A. This indicates only partial redundancy and highlights a key role for SV2C in the secretory process.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.02658DOI Listing

Publication Analysis

Top Keywords

sv2a sv2c
12
sv2a sv2b
8
role sv2c
8
sv2a
6
sv2c
6
sv2
5
sv2c vesicular
4
vesicular ca2+
4
ca2+ transporters
4
transporters control
4

Similar Publications

Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C.

View Article and Find Full Text PDF

Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HE and SV2 provide the crucial location and specificity information for HE to recognize SV2A and SV2B, but not the closely related SV2C.

View Article and Find Full Text PDF

Botulinum neurotoxin A1 (BoNT/A1) is the most potent natural poison in human. BoNT/A1 recognize the luminal domain of SV2A (LD-SV2A) and its glycosylation at position N573 (N573g) or the luminal domain of SV2C (LD-SV2C) and its glycosylation at position N559 (N559g) to bind neural membrane. Our computational data suggest that the N-glycan at position 480 (N480g) in the luminal domain of SV2C (LD-SV2C) indirectly enhanced the contacts of the neurotoxin surface with the second N-glycan at position 559 (N559g) by acting as a shield to prevent N559g to interact with residues of LD-SV2C.

View Article and Find Full Text PDF

Synaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known.

View Article and Find Full Text PDF
Article Synopsis
  • Botulinum neurotoxins (BoNTs) are used to help with muscle problems, but scientists need more info about how they work in different muscles.
  • In a study with rats, researchers looked at how BoNT receptors are spread out in various muscles and found differences based on muscle shape.
  • The findings could help doctors understand how to better use BoNT treatments in humans by showing where these receptors are located in our muscles.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!