It is estimated that approximately 1% of the newborn population of the British Isles are conceived following assisted reproduction technologies such as in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). While the long term outcome of IVF children is mostly reassuring, some concerns remain. Specifically, recent studies have suggested a possible association between assisted conception and clinical conditions of genetic origin known as genomic imprinting defects. This has arisen from several different studies observing an excess of assisted conceptions among the rare clinical disorders of Beckwith-Wiedemann syndrome (BWS) and Angelman syndrome (AS). The numbers of such patients described in the studies to date are small but indicate a clear need for large-scale investigations to clarify the link between genomic imprinting defects and assisted conception as well as to establish the exact biological basis of any such link. In view of the strong public interest in this area of medicine, it behoves all professionals working in reproductive medicine and associated areas to be aware of these emerging data and be in a position to discuss them in as informed and responsible a manner with patients, as current data limitations permit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-0528.2005.00784.x | DOI Listing |
Cell Stem Cell
January 2025
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China. Electronic address:
Blastoids are a promising model for studying early human embryogenesis, but current models have limitations in post-implantation development and lack comprehensive epigenetic assessments, especially regarding genomic imprinting. These issues can lead to failures in accurately modeling early embryonic development. In this study, we developed a high-fidelity blastoid model using 4 chemicals + leukemia inhibitory factor (LIF) (4CL) naive human pluripotent stem cells (hPSCs) (4CL blastoids).
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFCurr Opin Psychiatry
December 2024
Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.
Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.
Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.
Mol Cancer
January 2025
Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
VTRNA2-1 is a polymorphically imprinted locus. The proportion of individuals with a maternally imprinted VTRNA2-1 locus is consistently approximately 75% in populations of European origin, with the remaining circa 25% having a non-methylated VTRNA2-1 locus. Recently, VTRNA2-1 hypermethylation at birth was suggested to be a precursor of paediatric acute lymphoblastic leukaemia with biomarker potential.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!