Sco1 is a mitochondrial membrane protein involved in the assembly of the CuA site of cytochrome c oxidase. The Bacillus subtilis genome contains a homologue of yeast Sco1, YpmQ (hereafter termed BSco), deletion of which leads to a phenotype lacking in caa3 (CuA-containing) oxidase activity but expressing normal levels of aa3 (quinol) oxidase activity. Here, we report the characterization of the metal binding site of BSco in its Cu(I)-, Cu(II)-, Zn(II)-, and Ni(II)-bound forms. Apo BSco was found to bind Cu(II), Zn(II), and Ni(II) at a 1:1 protein/metal ratio. The Cu(I) protein could be prepared by either dithionite reduction of the Cu(II) derivative or by reconstitution of the apo protein with Cu(I). X-ray absorption (XAS) spectroscopy showed that Cu(I) was coordinated by two cysteines at 2.22 +/- 0.01 A and by a weakly bound low-Z scatterer at 1.95 +/- 0.03 A. The Cu(II) derivative was reddish-orange and exhibited a strong type-2 thiolate to Cu(II) transition around 350 nm. Multifrequency electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM) studies on the Cu(II) derivative provided evidence of one strongly coupled histidine residue, at least one strongly coupled cysteine, and coupling to an exchangeable proton. XAS spectroscopy indicated two cysteine ligands at 2.21 A and two O/N donor ligands at 1.95 A, at least one of which is derived from a coordinated histidine. The Zn(II) and Ni(II) derivatives were 4-coordinate with MS2N(His)X coordination. These results provide evidence that a copper chaperone can engage in redox chemistry at the metal center and may suggest interesting redox-based mechanisms for metalation of the mixed-valence CuA center of cytochrome c oxidase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0529539DOI Listing

Publication Analysis

Top Keywords

cuii derivative
12
metal binding
8
bacillus subtilis
8
homologue yeast
8
cytochrome oxidase
8
oxidase activity
8
znii niii
8
xas spectroscopy
8
cuii
5
spectroscopic studies
4

Similar Publications

Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.

View Article and Find Full Text PDF

Some specific anthraquinone derivatives (AQs) are known to be used widely as effective chemotherapeutic agents in the treatment of cancer. However, their fundamental shortcoming is the high rate of cardiotoxicity observed in treated patients, which is thought to be caused by the increase in production of reactive oxygen species (ROS) catalyzed by iron and copper. The development of improved AQs and other anticancer drugs with enhanced efficacy but reduced toxicity remains a high priority.

View Article and Find Full Text PDF

A novel Schiff base ligand (L), bearing NO donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV-Vis, H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150-250 °C and began to degrade in stages, resulting in the development of respective metal oxides.

View Article and Find Full Text PDF

Solution equilibrium and redox properties of metal complexes with 2-formylpyridine guanylhydrazone derivatives: Effect of morpholine and piperazine substitutions.

J Inorg Biochem

December 2024

Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:

Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.

View Article and Find Full Text PDF

Understanding molecular motifs that can interfere with amyloid fibrillation through non-covalent interactions is essential for addressing abnormal protein aggregation and associated human diseases. The pursuit of efficient diagnostic and treatment approaches for Alzheimer's disease (AD) has resulted in the development of M8HQ, a multifaceted small molecule turn-on probe derived from 8-hydroxyquinoline with versatile capabilities. M8HQ shows a strong affinity for amyloid beta (Aβ) fibrils, and its ability to target lysosomes enhances therapeutic precision by localizing within these organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!