Background: Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 microg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany.
Methods: Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC).
Results And Discussion: Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0).
Conclusion: Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts.
Recommendation And Outlook: MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1065/espr2005.08.277 | DOI Listing |
ACS Omega
January 2025
Groundwater Protection Unit, Environmental Department, Saudi Aramco, P.O. Box1977, Dhahran 31311, Saudi Arabia.
Methyl tertiary-butyl ether (MTBE) and BTEX (benzene, toluene, ethylbenzene, and xylenes) are common groundwater contaminants that pose significant health risks. This study investigated the efficiency of a colloidal activated carbon (CAC) material in removing MTBE and BTEX from contaminated water using batch and continuous core flooding systems. In the batch system, a mixture of sand and carbonate was coated with 1-3 g of CAC for the removal of contaminants.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Ethnopharmacology and Algal Biotechnology Laboratory, Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636011, India.
In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Meisterbio Co., Ltd., Okayama, Japan.
Natural stilbene compounds, such as resveratrol and pterostilbene, have been focused on owing to their diverse biological activities associated with antioxidant, anti-inflammatory, and anti-aging properties. However, their low water solubility limits their advanced applications. In this study, we investigated the protective effects of selected stilbene compounds (resveratrol, oxyresveratrol, gnetol, piceatannol, and pterostilbene) and their water-soluble derivatives (piceid, resveratrol polysaccharide, pterostilbene trisaccharide, and pterostilbene polysaccharide) against UVA-, UVB irradiation, tertiary-butyl hydroperoxide (t-BuOOH)- and hydrogen peroxide (HO)-induced injury in human epidermal cells.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil. Electronic address:
Phospholipases A (PLAs) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLAs from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA from BmV, designated BmPLA-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment.
View Article and Find Full Text PDFAm J Transl Res
November 2024
Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea Seoul 06591, Republic of Korea.
While methyl-tertiary butyl ether (MTBE) remains the sole clinical topical agent for gallstone dissolution, its utility is limited due to side effects, largely stemming from its relatively low boiling point (55°C). In this study, we introduced 2-methoxy-6-methylpyridine (MMP), a novel gallstone-dissolving compound featuring an aromatic moiety and a substantially higher boiling point (156°C), designed to mitigate these side effects. We conducted a comprehensive evaluation of the efficacy and potential toxicities of MMP compared to MTBE using both in vitro and in vivo models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!