Interaction of rifalazil with oxidant-generating systems of human polymorphonuclear neutrophils.

Antimicrob Agents Chemother

INSERM U479, CHU Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France.

Published: December 2005

It is well acknowledged that ansamycins display immunosuppressive and anti-inflammatory properties in vitro and in vivo. Rifalazil, a new ansamycin derivative, has not been studied in the context of inflammation. In particular, there are no data on the possible interference of rifalazil with oxidant production by phagocytes. We have compared the antioxidant properties of rifalazil to those of rifampin, a drug well known in this context, by using cellular and acellular oxidant-generating systems. Oxidant production by polymorphonuclear neutrophils was measured in terms of cytochrome c reduction, lucigenin-amplified chemiluminescence (Lu-ACL), and the 2',7'-dichlorofluorescin diacetate H2 (DCFDA-H2) technique (intracellular oxidant production). Rifalazil impaired O2- production in a concentration-dependent manner, with 50% inhibitory concentrations (IC50) (concentrations which inhibit 50% of the response) of 5.4 (30 and 60 min of incubation) and 6.4 (30 min) mg/liter, respectively, for phorbol myristate acetate (PMA) and formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. In agreement with the published fMLP-like activity of rifampin, the inhibitory effect of rifampin was significantly greater for fMLP (IC50 of 5.6 mg/liter) than for PMA (IC50 of 58 mg/liter) stimulation. Alteration of intracellular oxidant production was also observed with IC50 values similar to those obtained by the cytochrome assay. In addition, rifalazil and rifampin (> or = 25 mg/liter) scavenged O2-, as demonstrated by the acellular (hypoxanthine-xanthine oxidase) system. Interference with light detection systems was evidenced for both drugs by Lu-ACL. The clinical relevance of the antioxidant effect of rifalazil demonstrated in vitro, in particular its potential anti-inflammatory activity, requires further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315961PMC
http://dx.doi.org/10.1128/AAC.49.12.5018-5023.2005DOI Listing

Publication Analysis

Top Keywords

oxidant production
16
oxidant-generating systems
8
polymorphonuclear neutrophils
8
rifalazil rifampin
8
intracellular oxidant
8
ic50 mg/liter
8
rifalazil
6
production
5
interaction rifalazil
4
rifalazil oxidant-generating
4

Similar Publications

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.

View Article and Find Full Text PDF

Metabolic changes that allow artemisinin-resistant parasites to tolerate oxidative stress.

Front Parasitol

September 2024

Centro de Cálculo Científico de la Universidad de Los Andes (CeCalCULA), Universidad de Los Andes (ULA), Mérida, Venezuela.

Artemisinin-based treatments (ACTs) are the first therapy currently used to treat malaria produced by . However, in recent years, increasing evidence shows that some strains of are less susceptible to ACT in the Southeast Asian region. A data reanalysis of several omics approaches currently available about parasites of that have some degree of resistance to ACT was carried out.

View Article and Find Full Text PDF

While photochemical aging is known to alter secondary organic aerosol (SOA) properties, this process remains poorly constrained for anthropogenic SOA. This study investigates the photodegradation of SOA produced from the hydroxyl radical-initiated oxidation of naphthalene under low- and high-NO conditions. We used state-of-the-art mass spectrometry (MS) techniques, including extractive electrospray ionization and chemical ionization MS, for the in-depth molecular characterization of gas and particulate phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!