The objective of this study was to compare the blood-brain barrier (BBB) transport and brain distribution of levo- (R-CZE) and dextrocetirizine (S-CZE). Microdialysis probes, calibrated using retrodialysis by drug, were placed into the frontal cortex and right jugular vein of eight guinea pigs. Racemic CZE (2.7 mg/kg) was administered as a 60-min i.v. infusion. Unbound and total concentrations of the enantiomers were measured in blood and brain with liquid chromatography-tandem mass spectrometry. The brain distribution of the CZE enantiomers were compared using the parameters K(p,) K(p,u,) K(p,uu), and V(u,br). K(p) compares total brain concentration to total plasma concentration, K(p,u) compensates for binding in plasma, whereas K(p,uu) also compensates for binding within the brain tissue and directly quantifies the transport across the BBB. V(u,br) describes binding within the brain. The stereoselective brain distribution indicated by the K(p) of 0.22 and 0.04 for S- and R-CZE, respectively, was caused by different binding to plasma proteins. The transport of the CZE enantiomers across the BBB was not stereoselective, since the K(p,uu) was 0.17 and 0.14 (N.S.) for S- and R-CZE, respectively. The K(p,uu) values show that the enantiomers are effluxed to a large extent across the BBB. The V(u,br) of approximately 2.5 ml/g brain was also similar for both the enantiomers, and the value indicates high binding to brain tissue. Thus, when determining stereoselectivity in brain distribution, it is important to study all factors governing this distribution, binding in blood and brain, and the BBB equilibrium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.105.007211 | DOI Listing |
Nat Commun
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.
View Article and Find Full Text PDFSci Rep
December 2024
BAOBAB Unit, NeuroSpin center, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Decoding states of consciousness from brain activity is a central challenge in neuroscience. Dynamic functional connectivity (dFC) allows the study of short-term temporal changes in functional connectivity (FC) between distributed brain areas. By clustering dFC matrices from resting-state fMRI, we previously described "brain patterns" that underlie different functional configurations of the brain at rest.
View Article and Find Full Text PDFNat Commun
December 2024
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM.
View Article and Find Full Text PDFEndocrinology
November 2024
Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.
Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).
Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!