The resistance of tissues to physical stress is dependent upon strong cell-cell adhesion in which desmosomes play a crucial role. We propose that desmosomes fulfil this function by adopting a more strongly adhesive state, hyper-adhesion, than other junctions. We show that the hyper-adhesive desmosomes in epidermis resist disruption by ethylene glycol bis(2-aminoethyl ether)-N,N,N'N'-tetraacetic acid (EGTA) and are thus independent of Ca2+. We propose that Ca2+ independence is the normal condition for tissue desmosomes. Ca2+ independence is associated with an organised arrangement of the intercellular adhesive material exemplified by a dense midline. When epidermis is wounded, desmosomes in the wound-edge epithelium lose hyper-adhesiveness and become Ca2+ dependent, i.e. readily dissociated by EGTA. Ca2+-dependent desmosomes lack a midline and show narrowing of the intercellular space. We suggest that this indicates a less-organised, weakly adhesive arrangement of the desmosomal cadherins, resembling classical cadherins in adherens junctions. Transition to Ca2+ dependence on wounding is accompanied by relocalisation of protein kinase C alpha to desmosomal plaques suggesting that an 'inside-out' transmembrane signal is responsible for changing desmosomal adhesiveness. We model hyper-adhesive desmosomes using the crystal packing observed for the ectodomain of C-cadherin and show how the regularity of this 3D array provides a possible explanation for Ca2+ independence.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.02700DOI Listing

Publication Analysis

Top Keywords

ca2+ independence
12
hyper-adhesive desmosomes
8
desmosomes
7
ca2+
6
hyper-adhesion desmosomes
4
desmosomes regulation
4
regulation wound
4
wound healing
4
healing relationship
4
relationship cadherin
4

Similar Publications

α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.

View Article and Find Full Text PDF

The large-conductance calcium-activated potassium (BK) channel, which is crucial for urinary bladder smooth muscle relaxation, is a potential target for overactive bladder treatment. Our prior work unveiled CTIBD as a promising BK channel activator, altering and This study investigates CTIBD's activation mechanism, revealing its independence from the Ca and membrane voltage sensing of the BK channel. Cryo-electron microscopy disclosed that two CTIBD molecules bind to hydrophobic regions on the extracellular side of the lipid bilayer.

View Article and Find Full Text PDF

Fundamental Studies on Fluids-Independent Regenerative Nanocomposite Hydrogels for Fracture Treatments of Conformance Control.

ACS Appl Mater Interfaces

August 2024

School of Materials Sciences and Chemistry, and School of Earth Resources, China University of Geosciences, Wuhan 430074, China.

Traditional granular hydrogels showed excellent injectivity, thermal integrity, and efficient remediation of heterogeneous reservoirs. However, granular hydrogels have demonstrated their inability to adapt to fractures due to the lack of sufficient interactions. Herein, we present new nanocomposite hydrogels consisting of cationic nanogelators and anionic granular hydrogels that can chemically in situ reform bulk hydrogels in the fractures.

View Article and Find Full Text PDF

Ryanodine receptor stabilization therapy suppresses Ca- based arrhythmias in a novel model of metabolic HFpEF.

J Mol Cell Cardiol

October 2024

Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA; Claude D. Pepper Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:

Heart Failure with preserved ejection fraction (HFpEF) has a high rate of sudden cardiac death (SCD) and empirical treatment is ineffective. We developed a novel preclinical model of metabolic HFpEF that presents with stress-induced ventricular tachycardia (VT). Mechanistically, we discovered arrhythmogenic changes in intracellular Ca handling distinct from the changes pathognomonic for heart failure with reduced ejection fraction.

View Article and Find Full Text PDF

Genome sequence of Pyrococcus abyssi DSM25543 contains a coding sequence (PAB_RS01410) for α/β hydrolase (WP_010867387.1). Structural analysis revealed the presence of a consensus motif GXSXG and a highly conserved catalytic triad in the amino acid sequence of α/β hydrolase that were characteristic features of lysophospholipases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!