The src homology 2 (SH2) domain-containing inositol 5-phosphatase 2 (SHIP2) catalyses the dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] to phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. We report the identification of the cytoskeletal protein Vinexin as a protein interacting with SHIP2. This was achieved by yeast two-hybrid screening using the C-terminal region of SHIP2 as bait. Vinexin has previously been identified as a vinculin-binding protein that plays a key role in cell spreading and cytoskeletal organization. The interaction between SHIP2 and Vinexin was confirmed in lysates of both COS-7 cells and mouse embryonic fibroblasts (MEF). The C-terminus was involved in the interaction, as shown by the transfection of a truncated C-terminus mutant of SHIP2. In addition, we showed the colocalization between Vinexin alpha and SHIP2 at the periphery of transfected COS-7 cells. When added in vitro to SHIP2, Vinexin did not affect the PtdIns(3,4,5)P3 5-phosphatase activity of SHIP2. Enhanced cell adhesion to collagen-I-coated dishes was shown upon transfection of either SHIP2 or Vinexin to COS-7 cells. This effect was no longer observed with either a catalytic mutant or the C-terminus mutant of SHIP2. It also appears SHIP2 specific; this was not seen with SHIP1. Adhesion to the same matrix was decreased in SHIP2-/- MEF cells compared with MEF+/+ cells. Our data suggest that SHIP2 interaction with Vinexin promotes the localization of SHIP2 at the periphery of the cells leaving its catalytic site intact. The complex formation between Vinexin and SHIP2 may increase cellular adhesion. The data reinforce the concept that SHIP2 is active both as a PtdIns(3,4,5)P3 5-phosphatase and as a modulator of focal contact formation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2005.04996.xDOI Listing

Publication Analysis

Top Keywords

ship2
16
ship2 vinexin
12
cos-7 cells
12
vinexin
9
ship2 interaction
8
cytoskeletal protein
8
protein vinexin
8
c-terminus mutant
8
mutant ship2
8
ship2 periphery
8

Similar Publications

Background And Objectives: Maternal western-style diets that are high in glucose and fat have well-known cardiovascular effects on offspring, yet the combined influence of such diets during pregnancy is relatively less comprehended. This study investigates the impact of maternal high glucose and fat diet (HGF) on vascular constriction in offspring and the underlying mechanisms.

Methods And Results: Pregnant Sprague-Dawley rats were provided with either HGF or control diets.

View Article and Find Full Text PDF

Biological Age Affecting Attrition and Tooth Loss in a Follow-up Study.

J Dent Res

December 2024

Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany.

In population-based longitudinal studies, bias caused by nonresponse among eligible participants and attrition during follow-up thwarts conclusions. As this issue is not commonly addressed in dental studies, it is the aim of this study to examine the consequences of attrition with respect to tooth loss and mortality in a 10-y follow-up study. From the Study of Health in Pomerania (SHIP-0), a biological age (BA) score was constructed from 10 systemic biomarkers and related to one's actual chronological age (CA).

View Article and Find Full Text PDF

Discovery and evaluation of novel SHIP-1 inhibitors.

Bioorg Med Chem

November 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA. Electronic address:

Src Homology 2-containing Inositol 5'-Phosphatase-1 (SHIP-1), encoded by INPP5D, has been identified as an Alzheimer's disease (AD) risk-associated gene through recent genetic and epigenetic studies. SHIP-1 confers AD risk by inhibiting the TREM2 cascade and reducing beneficial microglial cellular processes, including phagocytosis. While several small molecules have been reported to modulate SHIP-1 activity, their limited selectivity and efficacy in advanced models restricted their potential as therapeutic agents or probes for biological studies.

View Article and Find Full Text PDF
Article Synopsis
  • The Sam domain of Ship2 interacts with EphA2, contributing to cancer development, making this connection a potential therapeutic target.
  • Researchers used FoldX software to design peptides that could disrupt the EphA2-Sam/Ship2-Sam complex, focusing on the Mid Loop interface of Ship2-Sam.
  • Promising new peptides were tested to assess their effectiveness in disrupting the interaction, their cytotoxic effects on cancer versus healthy cells, and their role in EphA2 degradation, paving the way for future strategies in targeting similar protein interactions.
View Article and Find Full Text PDF

The SH2-containing inositol 5'-phosphatase SHIP2 plays a crucial role in negative regulation of the PI3K/AKT signaling pathway. Putative small molecule inhibitors of SHIP2, AS1949490 and K149 have been reported to elicit a range of beneficial effects in treating or preventing obesity as well as killing cancer cells. However, whether these effects are direct results of SHIP2 inhibition has not been carefully assessed, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!