A lately discovered carbonic anhydrase (hCA, EC 4.2.1.1), the mitochondrial hCA VB, was cloned, expressed, and purified. Kinetic parameters proved it to be 3.37 times more effective than hCA VA as a catalyst for the physiological reaction, with kcat = 9.5 x 10(5) s(-1) and kcat/K(M) = 9.8 x 10(7) M(-1) s(-1), being second only to hCA II among the 16 isoforms presently known in humans. We investigated the inhibition of hCA VB with a library of sulfonamides/sulfamates, some of which are clinically used compounds. Benzenesulfonamides were ineffective inhibitors, whereas derivatives bearing 4-amino, 4-hydrazino, 4-methyl, 4-carboxy moieties or halogenated sulfanilamides were more effective (Ki's of 1.56-4.3 microM). Among the 10 clinically used compounds, acetazolamide, benzolamide, topiramate, and indisulam showed effective inhibitory activity (Ki's of 18-62 nM). Three compounds showed better activity against hCA VB over hCA II, among which were sulpiride and ethoxzolamide, which were 2 times more effective inhibitors of the mitochondrial over the cytosolic isozyme. hCA VB is a druggable target and some of its inhibitors may lead to the development of novel antiobesity therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm050483nDOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
inhibitors mitochondrial
8
hca
8
times effective
8
clinically compounds
8
inhibitors
5
anhydrase inhibitors
4
mitochondrial isozyme
4
isozyme target
4
target sulfonamide
4

Similar Publications

Background: Siglec-E is an immune checkpoint inhibitory molecule. Expression of Siglec-E on the immune cells has been shown to promote tumor regression. This study aimed to develop an adenovirus (Ad) vaccine targeting Siglec-E and carbonic anhydrase IX (CAIX) (Ad-Siglec-E/CAIX) and to evaluate its potential antitumor effects in several preclinical renal cancer models.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Alzheimer's disease (AD) is characterized- at both early and late stages- by neurovascular impairment. In AD, dysfunctional cerebral microvasculature is accompanied by an inflammatory response, contributing to Aβ and tau accumulation, brain cell stress and death, impaired clearance of metabolic waste, BBB permeability, and ultimately leading to neuronal demise and cognitive impairment. We previously showed that Aβ peptides induce mitochondrial dysregulation and caspase-mediated apoptosis in brain cells, including endothelial, glial, and smooth muscle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!