The Cl(-)/HCO3- exchanger (AE) is one of the mechanisms that cells have developed to adjust pH Despite its importance, the role of AE isoforms in controlling steady-state pH during alkalosis has not been widely investigated. In the present study, we have evaluated whether conditions simulating acute and chronic metabolic alkalosis affected the transport activity and protein levels of Cl-/HCO3- exchangers in a rat cortical collecting duct cell line (RCCD1). pH(i) was monitored using the fluorescent dye BCECF in monolayers grown on permeable supports. Anion exchanger function was assessed by the response of pH(i) to acute chloride removal. RT-PCR and immunoblot assays were also performed. Our results showed that RCCD1 cells express two members of the anion exchanger gene family: AE2 and AE4. Functional studies demonstrated that while in acute alkalosis pH(i) became alkaline and was not regulated, after 48 h adaptation; steady-state pH(i) reached a value similar to the physiological one. Chronic treated cells also resulted in a 3-fold rise in Cl(-)/HCO3- exchange activity together with a 2.2-fold increase in AE2, but not AE4, protein abundance. We conclude that RCCD1 cells can adapt to chronic extracellular alkalosis reestablishing its steady-state pH(i) and that AE2 would play a key role in cell homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000089853 | DOI Listing |
Inorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo Colombo Sri Lanka
The global scarcity of irrigation-grade water poses severe concerns in the agricultural sector. Desalination techniques including reverse osmosis, electrodialysis, capacitive deionization, membrane filtration, and multi-stage flash are some dynamic solutions to mitigate this challenge. In this study, novel bio-filter materials were explored and developed for the application of membrane-based electrodialysis.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!