The most common enteric colibacillosis in neonatal and newborns is caused by enterotoxigenic Escherichia coli(ETEC). Colonization of ETEC in the small intestine is associated with adhesions using fimbriae, which is known as a specific adhesion factor and provides highly specific means for anchoring and prerequisite for an infectious agent. In the present study we have engineered Lactobacillus acidophilus to produce recombinant K99 fimbriae, which is used for the colonization to the intestine of pigs. The expression of K99 fimbrial protein was confirmed using SDS-PAGE, immunoblot and agglutination analyses. To evaluate a function of the K99 fimbrial protein, inhibition and competition tests were performed on pre-screened intestinal brush border from pigs. The tests showed that recombinant L. acidophilus, not control L. acidophilus, had a significant inhibitory effect to and competition against K99+ E. coli in a dose dependent manner. In conclusion, we demonstrated that recombinant K99 fimbriae producing L. acidophilus was able to prevent E. coli binding to intestinal brush border.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1348-0421.2005.tb03687.x | DOI Listing |
PLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2025
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFGenome Res
November 2024
Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
Transmission of carbapenem-resistant Enterobacterales (CRE) in hospitals has been shown to occur through complex, multifarious networks driven by both clonal spread and horizontal transfer mediated by plasmids and other mobile genetic elements. We performed nanopore long-read sequencing on CRE isolates from a large urban hospital system to determine the overall contribution of plasmids to CRE transmission and identify specific plasmids implicated in the spread of (the carbapenemase [KPC] gene). Six hundred and five CRE isolates collected between 2009 and 2018 first underwent Illumina sequencing for genome-wide genotyping; 435 -positive isolates were then successfully nanopore sequenced to generate hybrid assemblies including circularized -harboring plasmids.
View Article and Find Full Text PDFCell Rep
September 2024
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. Electronic address:
Gamma/delta (γδ) T cells are unconventional lymphocytes that recognize diverse ligands via somatically recombined T cell antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive and do not require co-receptors or typical binding-induced conformational changes for triggering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!