Severe metabolic acidosis secondary to organophosphate poisoning.

Anesth Analg

Department of Anaesthesiology and Critical Care, Armed Forces Medical College, Pune, India,

Published: December 2005

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ANE.0000180376.67266.20DOI Listing

Publication Analysis

Top Keywords

severe metabolic
4
metabolic acidosis
4
acidosis secondary
4
secondary organophosphate
4
organophosphate poisoning
4
severe
1
acidosis
1
secondary
1
organophosphate
1
poisoning
1

Similar Publications

Urinary biomarkers of preeclampsia: An update.

Adv Clin Chem

January 2025

Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers.

View Article and Find Full Text PDF

Emerging biomarkers in Gaucher disease.

Adv Clin Chem

January 2025

Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States. Electronic address:

Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe.

View Article and Find Full Text PDF

Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.

View Article and Find Full Text PDF

Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.

View Article and Find Full Text PDF

Chapter 14: POST-SURGICAL FOLLOW-UP.

Ann Endocrinol (Paris)

January 2025

Department of Endocrinology, Diabetes and Metabolic Diseases, Angers University Hospital, Reference Center for Rare Thyroid and Hormone Receptor Diseases, 49933 Angers cedex 09, France; Univ Angers, Inserm, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, F-49000 Angers, France. Electronic address:

Primary hyperparathyroidism is treated surgically. Postoperatively, close monitoring of blood calcium levels is necessary to detect any hypocalcemia. Postoperative PTH assays can be performed within 24 hours to identify patients who will not develop permanent hypoparathyroidism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!