Protection against Mycobacterium tuberculosis is based on cell-mediated immunity, most importantly involving CD4+ and CD8+ T-cell subsets. One of the key features of the tubercle bacillus is its cell envelope, characterized by extremely abundant and specific lipids. The cell-surface glycolipid 2,3-di-O-acyl-trehalose (DAT) has been consistently found in M. tuberculosis strains. In this study, analysis of proliferation, activation markers and cytokine release was performed in human peripheral blood mononuclear cells (PBMC) activated in the presence and absence of DAT. We present evidence that mycobacterial DAT is able to reduce antigen-induced proliferation of human CD4+ and CD8+ T-cell subsets. We show that the effect is associated with a decrease of cells expressing the T-cell surface activation markers CD25 and CD69, and down-modulation of IL-2, IL-12, TNF-alpha and IL-10 cytokines. Data indicating that fine acyl chain structural variations in the trehalose-containing lipid may be involved in the degree of immune modulation are also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2005.08.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!