1H-pyrazole-4-carbohydrazides were synthesized and their leishmanicidal in vitro activities and cytotoxic effects were investigated. The drugs prototypes of these new compounds (ketoconazole, benznidazole, allopurinol and pentamidine) were also tested. It was found that among all the 1H-pyrazole-4-carbohydrazides derivatives examined, the most active compounds were those with X = Br, Y = NO2 (27) and X = NO2, Y = Cl (15) derivatives which showed to be most effective on promastigotes forms of L. amazonensis than on L. chagasi and L. braziliensis species. When tested against murine peritoneal macrophages as mammalian host cell controls of toxicity, 1-(4-Br-phenyl)-N'-[(4-NO(2)-phenyl)methylene]-1H-pyrazole-4-carbohydrazides (27) (EC50 = 50 microM l(-1)) and 1-(4-NO2-phenyl)-N'-[(4-Cl-phenyl)methylene]-1H-pyrazole-4-carbohydrazides (15) EC50 = 80 microM l(-1))] was reasonably toxic. However, both compounds were less toxic than pentamidine and ketoconazole. These results provide new perspectives on the development of drugs with activities against Leishmania parasite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2005.10.007 | DOI Listing |
PLoS One
August 2017
Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1-4) circulating around the world.
View Article and Find Full Text PDFTo obtain the structural diversity of bioactive compounds similar to cotylenins and fusicoccins that modulate 14-3-3 protein-protein interactions in eukaryotes, screening tests were carried out using the lettuce seed dormancy breaking-assay. An acetone extract of the liverwort Plagiochila sciophila exhibited significant activity against the seeds in the presence of the plant hormone abscisic acid. Activity-guided fractionation of the extract afforded the isolation of seven novel fusicoccane-type diterpenoids, named fusicosciophins A-E (1-5), 8-deacetyl (6) and 9-deacetyl fusicosciophin E (7).
View Article and Find Full Text PDFOrphanet J Rare Dis
June 2014
INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris cedex 06, France.
Background: Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models.
View Article and Find Full Text PDFThe effects of the specific blockers of the inward Na-current --lidocaine and tetrodotoxin (TTX) were studied with microelectrode technique on the spontaneously beating strips of the mouse sinoauricular (SA) area. Lidocaine (25 microM) and TTX (25 pM) increased the duration of the peak of the action potentials (AP) of true pacemaker cells by extending the plateau phase (phase 2 or APD 20), slowing the dV/dt max from 2.6 +/- 0.
View Article and Find Full Text PDFNat Prod Commun
September 2013
G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia.
New marine natural products, pulchranins B and C (2 and 3), were isolated from the marine sponge Monanchora pulchra and their structures were established using NMR and MS analysis. Compounds 2 and 3 were moderately active as inhibitors of TRPV1 (EC50 value of 95 and 183 microM, respectively) and less potent against TRPV3 and TRPA1 receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!