The detrimental effects of traumatic brain injury (TBI) on brain tissue integrity involve progressive axonal damage, necrotic cell loss, and both acute and delayed apoptotic neuronal death due to activation of caspases. Post-injury accumulation of amyloid precursor protein (APP) and its toxic metabolite amyloid-beta peptide (Abeta) has been implicated in apoptosis as well as in increasing the risk for developing Alzheimer's disease (AD) after TBI. Activated caspases proteolyze APP and are associated with increased Abeta production after neuronal injury. Conversely, Abeta and related APP/Abeta fragments stimulate caspase activation, creating a potential vicious cycle of secondary injury after TBI. Blockade of caspase activation after brain injury suppresses apoptosis and improves neurological outcome, but it is not known whether such intervention also prevents increases in Abeta levels in vivo. The present study examined the effect of caspase inhibition on post-injury levels of soluble Abeta, APP, activated caspase-3, and caspase-cleaved APP in the hippocampus of nontransgenic mice expressing human Abeta, subjected to controlled cortical injury (CCI). CCI produced brain tissue damage with cell loss and elevated levels of activated caspase-3, Abeta(1-42) and Abeta(1-40), APP, and caspase-cleaved APP fragments in hippocampal neurons and axons. Post-CCI intervention with intracerebroventricular injection of 100 nM Boc-Asp(OMe)-CH(2)F (BAF, a pan-caspase inhibitor) significantly reduced caspase-3 activation and improved histological outcome, suppressed increases in Abeta and caspase-cleaved APP, but showed no significant effect on overall APP levels in the hippocampus after CCI. These data demonstrate that after TBI, caspase inhibition can suppress elevations in Abeta. The extent to which Abeta suppression contributes to improved outcome following inhibition of caspases after TBI is unclear, but such intervention may be a valuable therapeutic strategy for preventing the long-term evolution of Abeta-mediated pathology in TBI patients who are at risk for developing AD later in life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2005.10.011DOI Listing

Publication Analysis

Top Keywords

caspase inhibition
12
increases abeta
12
caspase-cleaved app
12
abeta
10
brain injury
8
injury tbi
8
brain tissue
8
cell loss
8
app
8
risk developing
8

Similar Publications

Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.

Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.

View Article and Find Full Text PDF

Background: () is associated with a variety of malignancies. However, the role of in osteosarcoma and its underlying mechanism are not yet fully understood. This study aimed to explore the role and the mechanism of in osteosarcoma.

View Article and Find Full Text PDF

The current work focuses on the creation of novel derivatives of the quinazolinone ring system, with various substituted thiophene, thienopyrimidine, and thienopyridine scaffolds 3a,b-11. Employing the standard MTT assay, every target compound's antiproliferative efficacy was evaluated in comparison with doxorubicin against both normal WI-38 cells and various cancer cell lines. Derivatives 6, 8a, and 8b demonstrated the most potent activity, alongside their safety profiles against WI-38.

View Article and Find Full Text PDF

Objective: The present study was designed to comprehensively analyze the expression profiles of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), estrogen-related receptor-α (ERRα), estrogen receptor-β (ERβ), interleukin-6 (IL-6), cysteinyl-aspartic acid-specific protease-3 (caspase-3), and cysteinyl-aspartic acid-specific protease-9 (caspase-9) in endometriosis tissues. It also aimed to elucidate the hitherto unclarified role of PGC-1α in the processes of proliferation, apoptosis, and gene expression regulation of human endometrial stromal cells, thereby providing novel insights and identifying potential molecular targets for advancing endometriosis treatment modalities.

Methods: A total of 49 ectopic endometrial tissue samples and 50 normal endometrial tissue samples were meticulously collected from patients who underwent gynecological surgeries in the People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine in Fuzhou, China, between January 2022 and January 2023.

View Article and Find Full Text PDF

Bazhen Decoction (Eight Treasures Decoction) has demonstrated efficacy in the treatment of colorectal cancer (CRC), yet the active ingredients in it and the mechanisms underlying their anti-cancer properties are not well understood. Through network pharmacology, the effective components of Bazhen Decoction against CRC and their corresponding key genes were delineated. Molecular docking was executed to identify the active component targeting the key gene CXCL8, which led to the discovery of Quercetin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!