Background: The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function.
Methods: The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by homologous recombination (PEPCK-C-/- mice) and the metabolic consequences assessed.
Results: PEPCK-C-/- mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl). The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C-/- mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times), beta-hydroxybutyrate (3 times) and triglyceride (50%) in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C-/- mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-14C]-acetate, and [5-14C]-glutamate to 14CO2 by liver slices from PEPCK-C-/- mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C-/- mice was 10 times that of controls.
Conclusion: We conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions) and that the failure of this process in the livers of PEPCK-C-/- mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1325233 | PMC |
http://dx.doi.org/10.1186/1743-7075-2-33 | DOI Listing |
Am J Physiol Renal Physiol
June 2023
Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
JCI Insight
June 2021
Department of Chemical and Biomolecular Engineering and.
The liver is the major source of glucose production during fasting under normal physiological conditions. However, the kidney may also contribute to maintaining glucose homeostasis in certain circumstances. To test the ability of the kidney to compensate for impaired hepatic glucose production in vivo, we developed a stable isotope approach to simultaneously quantify gluconeogenic and oxidative metabolic fluxes in the liver and kidney.
View Article and Find Full Text PDFSci Rep
December 2020
School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
Phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme with a cytosolic (Pck1/PEPCK-C) and mitochondrial (Pck2/PEPCK-M) isoform. Here we investigate the effect of 3-mercaptopicolinic acid (3-MPA), a PEPCK inhibitor, on C2C12 muscle cells. We report that Pck2 mRNA is 50-5000-fold higher than Pck1 during C2C12 myogenesis, indicating Pck2 is the predominant PEPCK isoform.
View Article and Find Full Text PDFEndocrine
July 2020
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Purpose: Investigate the pathways of glycerol-3-P (G3P) generation for triacylglycerol (TAG) synthesis in retroperitoneal (RWAT) and epididymal (EWAT) white adipose tissues from high-fat diet (HFD)-fed mice.
Methods: Mice were fed for 8 weeks a HFD and glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into TAG-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol in both tissues.
Results: HFD increased body and adipose tissue mass and serum levels of glucose and insulin, which were accompanied by glucose intolerance.
Biochimie
January 2020
Laboratory of Physiology, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil. Electronic address:
Glyceroneogenesis is important for the maintenance of fat content in white adipose tissue (WAT). An increase in WAT, and especially the pattern of fat distribution, specifically in visceral depots, potentially contributes to cardiovascular and metabolic diseases, such as type 2 diabetes mellitus, myocardial infarction and hypertension. Recent studies have shown important differences in glyceroneogenesis of different fat sites under the administration of glucocorticoids (GCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!